×
06.12.2019
219.017.ea0d

Результат интеллектуальной деятельности: Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур и критических температур исследуемых соединений при давлениях от 0 до 200 атм и температурах от 20 до 1000°С. Предложен способ исследования кинетики химических реакций, проходящих в твердом, жидком или газообразном состояниях с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критической температуры исследуемых соединений газометрическим методом. Способ заключается в автоматическом фиксировании и обработке зависимостей упругостей паров жидких соединений от температуры, зависимостей давлений газообразных соединений в реакционном сосуде от времени и зависимостей констант скоростей химических реакций, проходящих с выделением газообразных веществ от температуры. Причем, с целью определения давления газообразных соединений, используют стеклянный реакционный сосуд со стеклянной манометрической мембраной и стеклянной трубкой для загрузки исследуемого образца, при этом к трубке припаяна стеклянная стрелка, а у основания мембраны трубка запаяна, а стеклянный реакционный сосуд с трубкой, стеклянной манометрической мембраной и стеклянной стрелкой установлен в металлическую камеру компенсации давления. Технический результат – повышение информативности получаемых данных за счет создания установки и разработки способа исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критических температур исследуемых соединений при давлениях от 0 до 200 атм и температурах от 20 до 1000°С. 2 н.п. ф-лы, 7 ил.

Изобретение предназначено для исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критических температур исследуемых соединений при давлениях от 0 до 200 атм при температурах от 20°С до 1000°С.

В «The Unimolecular Decomposition of Gaseous Chloropicrin» (E. W. R. Steacie, and W. McF. Smith // The Journal of Chemical Physics, - 1938, vol 6, №3, P. 145-149) описана манометрическая установка для исследования разложения вещества в газовой фазе. На Фиг. 1 представлена установка для исследования деструкции, где 1 - стеклянный манометр, 2 - магнитный клапан, 3 - отросток, 4 - ртутный манометр, 5 - реакционный сосуд. К недостатку этой установки можно отнести ограниченный диапазон давлений и температур эксперимента: давления в реакционном сосуде не превышают 1 атм., а температуры - 170°С.

В учебном пособии «Пороха, ракетные твердые топлива и их свойства. Физико-химические свойства порохов и ракетных твердых топлив» (А.В. Косточко, Б.М. Казбан. Учебное пособие, Казань, КГТУ, 2011) описана схема установки для исследования деструкции вещества. На Фиг 2. приведена схема экспериментальной установки, где 1 - реакционный сосуд, 2 - шарик для измерения объема реакционного сосуда, 3 - ловушка для жидкого азота, 4 - ртутный манометр, 5 - ввод для дозировки воздуха или газа в реакционный сосуд, 6 - термопарная манометрическая лампа для измерения вакуума в системе, 7 - диффузионный масляный насос для создания вакуума, 8 - буферный баллон. К недостатку этой установки можно отнести ограниченный диапазон давлений и температур эксперимента: давления в реакционном сосуде не превышают 1 атм., а температуры - 250°С.

Задачей настоящего изобретения является создание установки и разработка способа исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критических температур исследуемых соединений при давлениях от 0 до 200 атм при температурах от 20°С до 1000°С. Поставленная задача решается путем применения предлагаемого изобретения.

Заявляемое устройство для исследования кинетики химических реакций, проходящих в твердом, жидком или газообразном состояниях с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критической температуры исследуемых соединений, состоящее из стеклянного реакционного сосуда, стеклянной манометрической мембраны, стеклянной стрелки, манометра, дополнительно снабжено металлической камерой компенсации давления, системы регулирования давления, термостатом, контролирующей и регулирующей термопарами, датчиком положения стрелки, преобразователем сигналов, ЭВМ, баллоном с воздухом, вакуумным насосом стеклянным реакционным сосудом с трубкой и стеклянной манометрической мембраной, служащий для загрузки исследуемого образца, причем к трубке припаяна стеклянная стрелка, а у основания мембраны трубка запаяна, при этом стеклянный реакционный сосуд с трубкой, стеклянной манометрической мембранной и стеклянной стрелкой, установлен в металлическую камеру компенсации давления, что позволяет в реакционном сосуде определять показания давления от 0 до 200 атм при температурах от 20°С до 1000°С, кроме того камера компенсации давления имеет гибкое соединение с системой регулирования давления посредством воздуховодов для автоматической подачи воздуха, выполнена с возможностью установки и извлечения из нее реакционного сосуда, который в свою очередь жестко закреплен в камере компенсации давления.

Кроме того поставленная задача решается способ исследования кинетики химических реакций, проходящих в твердом, жидком или газообразном состояниях с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критической температуры исследуемых соединений газометрическим методом, заключающимся в автоматическом фиксировании и обработке зависимостей упругостей паров жидких соединений от температуры, зависимостей давлений газообразных соединений в реакционном сосуде от времени и зависимостей констант скоростей химических реакций, проходящих с выделением газообразных веществ от температуры, в котором с целью определения давления газообразных соединений используют стеклянный реакционный сосуд со стеклянной манометрической мембранной и стеклянной трубкой для загрузки исследуемого образца, причем к трубке припаяна стеклянная стрелка, а у основания мембраны трубка запаяна, при этом стеклянный реакционный сосуд с трубкой, стеклянной манометрической мембраной и стеклянной стрелкой установлен в металлическую камеру компенсации давления.

На Фиг. 3 приведена схема предлагаемой манометрической установки, где а) манометрическая установка б) реакционный сосуд и мембрана до загрузки образца, 1 - стеклянный реакционный сосуд, 2 - стеклянная манометрическая мембрана, 3 - стеклянная стрелка, 4 - металлическая камера компенсации давления, 5 - система регулирования давления, 6 - манометр, 7 - датчик положения стрелки, 8 - термостат, 9 - контролирующая термопара, 10 - регулирующая термопара, 11 - преобразователь сигналов, 12 - ЭВМ, 13 - вакуумный насос, 14 - баллон с воздухом, 15 - стеклянная трубка. SCADA-система манометрической установки включает в себя: на нижнем уровне - систему регулирования давления 5, термопары 9, 10, манометр 6; на среднем уровне - преобразователь сигналов 11; на верхнем уровне - ЭВМ, посредством которого осуществляется автоматическое управления процессом исследования, сбор и обработка экспериментальных данных.

Проведение исследования на установке

Навеску испытуемого соединения загружают в реакционный сосуд 1 через трубку 15 и манометрическую мембрану 2 помещают навеску испытуемых соединений в жидком или твердом состоянии, при необходимости навеску замораживают в жидком азоте, затем откачивают воздух из реакционного сосуда при помощи вакуумного насоса. Навеску возможно загружать в реакционный сосуд в газообразном состоянии без заморозки в жидком азоте. При помощи газовой горелки запаивают трубку 15 у основания мембраны 2 и припаивают стрелку 3. Реакционный сосуд с запаянной навеской, стеклянной мембраной и припаянной стрелкой 3 устанавливают в камеру компенсации давления 4. Из камеры компенсации давления 4 откачивают воздух и устанавливают ее в термостат 8. Установка готова к работе.

Далее запускают автоматический режим исследования. Установка может работать в двух режимах: «Определение теплофизических свойств», «Исследование кинетики термического разложения». При изменении количества газов в реакционном сосуде 1 изменяется давление в результате чего происходит отклонении стрелки 3 от нулевого положения, при этом происходит автоматическая подача воздуха в камеру компенсации давления 4, в результате чего стрелка 3 возвращается в нулевое положение, а по давлению в камере компенсации 4 определяется давление в реакционном сосуде 1. Положение стрелки определяется при помощи датчика положения стрелки 7 - фотометрического, оптического, емкостного, индуктивного или другого, удовлетворяющего требованиям точности.

В режиме исследования теплофизических свойств прибором автоматически фиксируется зависимость упругости паров жидкого соединения от температуры, а по полученным данным определяется уравнение зависимости упругости паров навески от температуры и рассчитываются энтальпия и энтропия испарения, температура кипения, критическая температура исследуемого соединения. Энтальпия испарения рассчитывается по уравнению Клапейрона-Клазиуса:

где - энтальпия испарения, ккал/моль; А - константа; R=1,987 кал/(К*моль); Т - температура, К; Р - давление, атм.

Откуда энтропия испарения определяется по формуле:

где А - константа из (1); R=1,987 кал/(моль*К); ΔSисп - энтропия испарения, кал/(моль*К)

Температуры кипения и критические температуры соединений определяются по зависимости упругости паров этих соединений от температуры. При достижении критической температуры вещество не может больше находиться в жидком состоянии.

В случае, когда исследуется упругость неиндивидуальных компонентов, давление насыщенных паров описывается следующим уравнением:

где Р - давление насыщенных паров, атм; Т - температура, К; А и В - постоянные параметры.

В режиме исследования кинетики газовыделения при различных температурах по давлению в реакционном сосуде определяются зависимости количеств газообразных соединений от времени, а по полученным данным устанавливаются кинетические законы и рассчитываются константы скоростей химических реакций. Реакция газовыделения может описываться различными кинетическими уравнениями. В случае, если реакция газовыделения описывается кинетическим законом 1-го порядка константу скорости определяют по уравнению:

где - конечное давление газовыделения при экстраполяции на бесконечное время проведения реакции;

k - константа скорости реакции, с-1.

t - время, с.

По полученным данным определяются аррениусовские зависимости констант скоростей реакций газовыделения от температуры:

где k0 и Е - постоянные параметры; R=1,987 кал/(К*моль); Т - абсолютная температура, К.

Пример определения упругости паров, температуры кипения и критической температуры, энтальпии и энтропии испарения жидкого соединения

Измерение упругости пара образца бинор-s проводили в интервале температур 100÷390°С. Зависимость упругости паров образца бинор-s от температуры, его температура кипения и критическая температура приведены на Фиг. 4. Аналитическая зависимость давления насыщенного пара образца бинор-s от температуры представляется в виде:

Результаты определения теплоты испарения, энтропии испарения, температуры кипения и критической температуры образца бинор-s приведены на Фиг. 5.

Исследование кинетики газовыделения при термическом разложении жидких, твердых и газообразных соединений

Кинетика газовыделения реакции термического разложения образца бинор-s изучена в интервале температур 425°С - 450°С с шагом 5°С. Зависимости давлений в сосудах от времени при этих температурах приведены на Фиг. 6

На Фиг. 7 приведена аррениусовская зависимость константы скорости реакции термического разложения бинор-s от температуры. Аналитическое выражение полученной зависимости представляется в виде:


Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом
Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом
Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом
Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом
Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом
Источник поступления информации: Роспатент

Показаны записи 11-20 из 33.
25.08.2017
№217.015.b0b8

Способ получения комплексов платины (iv) с аминонитроксильными радикалами

Изобретение относится к процессу получения комплексов платины(IV) с аминонитроксильными радикалами, полученных при этом продуктов и их использования. Описан способ получения комплексов платины(IV) с аминонитроксильными радикалами общей формулы 1 где А - гетероциклический нитроксильный радикал...
Тип: Изобретение
Номер охранного документа: 0002613513
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.e844

Способ получения n,n-бис(4,6-диазидо-1,3,5-триазин-2-ил)амина

Изобретение относится к способу получения N,N-бис(4,6-диазидо-1,3,5-триазин-2-ил)амина (I) путем взаимодействия N,N-бис(4,6-дихлор-1,3,5-триазин-2-ил)амина с азидирующим агентом, в качестве которого используют азид натрия, в среде водного ацетона при комнатной температуре, с последующим...
Тип: Изобретение
Номер охранного документа: 0002627357
Дата охранного документа: 07.08.2017
29.12.2017
№217.015.f94a

3,4,5-триазидопиридин-2,6-дикарбонитрил и способ его получения

Изобретение относится к 3,4,5-триазидопиридин-2,6-дикарбонитрилу формулы (I) и способу его получения. 3,4,5-Триазидопиридин-2,6-дикарбонитрил формулы (I) получен азидированием 3,4,5-трихлорпиридин-2,6-дикарбонитрила азидом натрия в водном ацетоне. Изобретение может быть использовано для...
Тип: Изобретение
Номер охранного документа: 0002639303
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.1cee

2,3,5,6-тетраазидопиридин-4-карбонитрил и способ его получения

Изобретение относится к 2,3,5,6-тетраазидопиридин-4-карбонитрилу формулы (I) и способу его получения. 2,3,5,6-Тетраазидопиридин-4-карбонитрил формулы (I) получен азидированием тетрафторпиридин-4-карбонитрила азидом натрия в водном ацетоне, процесс ведут на воздухе при несильном нагревании....
Тип: Изобретение
Номер охранного документа: 0002640415
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1e14

Полимерное соединение и его применение в фотовольтаических устройствах

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления полимерных фотовольтаических, светоизлучающих устройств и органических транзисторов, а также к способу получения полимерного соединения и его применению. Полимерное соединение имеет общую...
Тип: Изобретение
Номер охранного документа: 0002640810
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1f9c

Полимерное соединение и его применение в фотовольтаических устройствах

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления различных органических или гибридных оптоэлектронных изделий, структур и устройств, в том числе органических фотовольтаических устройств и органических светоизлучающих транзисторов, а также...
Тип: Изобретение
Номер охранного документа: 0002641103
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.21d1

Способ переработки попутных и природных газов

Изобретение относится к способу переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов :...
Тип: Изобретение
Номер охранного документа: 0002641701
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.3067

Способ получения синтез-газа

Изобретение относится к процессам получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Способ получения синтез-газа основан на горении смеси углеводородного сырья с окислителем с внутри одной или нескольких полостей, образованных материалом,...
Тип: Изобретение
Номер охранного документа: 0002644869
Дата охранного документа: 14.02.2018
12.07.2018
№218.016.6ff2

Способ получения наноструктурированных платиноуглеродных катализаторов

Изобретение относится к области химических источников тока, а именно к способу получения катализаторов с наноразмерными частицами платины на углеродных носителях для электродов низкотемпературных топливных элементов (НТЭ), который заключается в том, что процесс электрохимического...
Тип: Изобретение
Номер охранного документа: 0002660900
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.704b

Никель-графеновый катализатор гидрирования и способ его получения

Изобретение относится к никель-графеновому катализатору гидрирования, содержащему 10-25 мас. % нанокластеров никеля размером 2-5 нм, нанесенных на углеродные наночастицы. Причем в качестве носителя он содержит восстановленный оксид графита, представляющий собой чешуйки восстановленного оксида...
Тип: Изобретение
Номер охранного документа: 0002660232
Дата охранного документа: 10.07.2018
Показаны записи 11-20 из 20.
20.06.2018
№218.016.64b4

Смазочная композиция для поршневых двигателей

Изобретение относится к смазочным композициям для поршневых двигателей, в частности к всесезонным смазочным композициям для авиационных поршневых двигателей, и направлено на улучшение эксплуатационных характеристик смазочной композиции требуемой вязкости при использовании ее для смазки...
Тип: Изобретение
Номер охранного документа: 0002658016
Дата охранного документа: 19.06.2018
03.07.2018
№218.016.69f5

Рабочая жидкость для гидравлических систем

Изобретение относится к рабочим (гидравлическим) жидкостям и может быть использовано в областях техники, требующих применения в гидросистемах рабочих жидкостей с большим диапазоном рабочих температур и обладающих повышенной пожаробезопасностью, в частности, в авиационной технике. Рабочая...
Тип: Изобретение
Номер охранного документа: 0002659393
Дата охранного документа: 02.07.2018
08.03.2019
№219.016.d4bc

Способ отсечки и регулирования тяги прямоточных воздушно-реактивных двигателей на твердом топливе и устройство для его осуществления

Способ отсечки и регулирования тяги прямоточных воздушно-реактивных двигателей на твердом топливе заключается в том, что в зону циркуляционного течения со стабилизированным пламенем, образующуюся за стабилизатором пламени, осуществляют подачу инертного газа. Инертный газ подают в виде кольцевой...
Тип: Изобретение
Номер охранного документа: 0002316668
Дата охранного документа: 10.02.2008
11.03.2019
№219.016.dc29

Устройство для оценки качества смазочных масел

Изобретение относится к испытательной технике для оценки качества смазочных масел, преимущественно авиационных моторных масел, в частности к оценке их коррозионной активности на конструкционные и уплотнительные материалы, и может быть использовано в химической и авиационной промышленности для...
Тип: Изобретение
Номер охранного документа: 0002455629
Дата охранного документа: 10.07.2012
20.03.2019
№219.016.e813

Смазочная композиция универсального синтетического масла, работоспособного в газотурбинных двигателях и редукторах вертолетов, а также турбовинтовых двигателях и турбовинтовентиляторных двигателях самолетов

Настоящее изобретение относится к смазочной композиции универсального синтетического масла, работоспособного в газотурбинных двигателях и турбиновинтовентиляторных двигателях, включающей в качестве базовой основы авиационный пентаэритритовый эфир на основе смеси полных сложных эфиров...
Тип: Изобретение
Номер охранного документа: 0002452767
Дата охранного документа: 10.06.2012
20.03.2019
№219.016.e817

Композиция высокотемпературного масла на основе фторсилоксановой жидкости

Изобретение относится к получению высокотемпературного масла на основе фторсодержащего полиорганосилоксана, пригодного для аэрокосмической техники. Композиция масла содержит фторсилоксановую жидкость, содержащую γ-трифторпропильный радикал (марки 161-44М), с вязкостью при 100°С не менее 9,0...
Тип: Изобретение
Номер охранного документа: 0002452765
Дата охранного документа: 10.06.2012
10.04.2019
№219.017.0486

Присадка для повышения термоокислительной стабильности углеводородного реактивного топлива и реактивное топливо

Изобретение относится к области нефтепереработки и нефтехимии. Присадка для повышения термоокислительной стабильности углеводородного реактивного топлива на основе прямогонного керосинового дистиллята содержит 2,2-метилен-бис(4-метил-6-трет-бутилфенол), масляный раствор алкенилсукцинимида и...
Тип: Изобретение
Номер охранного документа: 0002372382
Дата охранного документа: 10.11.2009
19.06.2019
№219.017.8862

Интегральный ракетно-прямоточный двигатель (ирпдт)

Изобретение относится к машиностроению, а именно к интегральным ракетно-прямоточным двигателям. Интегральный ракетно-прямоточный двигатель содержит газогенератор с твердотопливным зарядом, камеру сгорания, снабженную, по меньшей мере, одним патрубком, несбрасываемую крышку, размещенную на...
Тип: Изобретение
Номер охранного документа: 0002325544
Дата охранного документа: 27.05.2008
19.06.2019
№219.017.8ad1

Вспомогательная силовая установка для самолета

Изобретение относится к области авиации, более конкретно к вспомогательной силовой установке для самолета. Вспомогательная силовая установка для самолета содержит реактор-конвертор, батарею топливных элементов, блоки хранения и подачи топлива, соединенные с реактором-конвертором, дожигатель,...
Тип: Изобретение
Номер охранного документа: 0002434790
Дата охранного документа: 27.11.2011
10.07.2019
№219.017.aa7d

Моторно-редукторное масло для авиационной техники

Изобретение относится к области нефтехимии и авиационной технике, конкретно к моторно-редукторному маслу, предназначенному для работы в теплонапряженных газотурбинных (турбовинтовых) двигателях и высоконагруженных редукторах самолетов и вертолетов. Сущность: масло в качестве базового масла...
Тип: Изобретение
Номер охранного документа: 0002283341
Дата охранного документа: 10.09.2006
+ добавить свой РИД