×
01.12.2019
219.017.e91e

Результат интеллектуальной деятельности: Модель воздухозаборника двухконтурного двигателя летательного аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиации, к аэродинамическим испытаниям моделей воздухозаборников двухконтурных турбореактивных двигателей (ТРДД), в частности, для исследований, например, условий вихреобразования и попадания посторонних частиц в воздухозаборник двигателя летательного аппарата на стартовых режимах, и других исследованиях при заданных суммарных расходах воздуха через двигатель в условиях внешнего обдува. Устройство содержит внутренний и внешний контуры воздушного потока, имитирующие газогенераторный и вентиляторный контуры двигателя и управляемый с внешнего пульта дроссель регулирования площади проходного сечения внутреннего контура. Дроссель выполнен в виде заслонки с возможностью перемещения вдоль оси внутреннего контура с уменьшением или увеличением площади проходного сечения внутреннего контура. Заслонка имеет коническую форму. Технический результат заключается в обеспечении моделирования дополнительного параметра - степени двухконтурности двигателя и возможности более точной оценки степени защищенности двигателя от попадания посторонних предметов при проведении испытаний в условиях наиболее полного соблюдения условий аэродинамического подобия явления вихревого захвата посторонних частиц и других исследованиях с моделированием степени двухконтурности. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиации, к аэродинамическим испытаниям моделей воздухозаборников двухконтурных турбореактивных двигателей (ТРДД), в частности, к моделированию степени двухконтурности двигателя при исследовании, например, условий вихреобразования и попадания посторонних (твердых) частиц в воздухозаборник двигателя летательного аппарата на стартовых режимах, и других исследованиях при заданных суммарных расходах воздуха через двигатель в условиях внешнего обдува.

При эксплуатации самолетов с газотурбинными двигателями (ГТД), в особенности при их базировании на аэродромах пониженного класса, наблюдается большое число случаев повреждения лопаток компрессора посторонними предметами, попадающими в двигатель. Исследование причин и закономерностей повреждения ГТД посторонними предметами, а также разработка мероприятий для их защиты, ведутся в РФ и за рубежом. Однако из-за многообразия причин повреждения в целом проблема остается нерешенной до настоящего времени.

По данным статистики, большинство ГТД, отсылаемых на базы капитального ремонта, имеют относительно небольшие повреждения в виде выбоин и вмятин, глубина которых превышает пределы, установленные техническим регламентом. Небольшие размеры зарубок указывают на то, что большинство из них было сделано маленькими предметами.

Исследования показывают, что повреждение компрессора является основной причиной, приводящей к росту числа аварий реактивных самолетов. Одна из причин - засасывание частиц воздушным вихрем с поверхности аэродрома.

Процент повреждений посторонними предметами двигателей различных самолетов зависит от высоты расположения воздухозаборника двигателя над поверхностью земли и режима работы двигателя. Проблема особенно актуальна при использовании региональных аэропортов, имеющих низкое качество покрытия взлетно-посадочной полосы, и для самолетов с низким расположением двигателей. В связи с этим, возникает необходимость исследования этой проблемы как теоретическими, так и экспериментальными методами.

Экспериментальные исследования проводятся при моделировании условий обдува и режимов работы двигателя без учета влияния степени двухконтурности двигателя (соотношения расходов воздуха, проходящих через вентиляторный и газогенераторный контуры). Степень двухконтурности двигателей может принимать широкий диапазон значений. Этот параметр определяет, например, характеристику вихревого течения вблизи воздухозаборника и, как следствие, формирует различные траектории движения частиц, подхваченных вихрем. Моделирование степени двухконтурности двигателя при проведении испытаний воздухозаборника позволит обеспечить наиболее полное соблюдение условий аэродинамического подобия при исследовании явления вихревого захвата посторонних частиц и их попадания в воздухозаборник, а также других исследованиях.

Известны различные модели для аэродинамических испытаний, являющиеся аналогами заявленного изобретения.

Известна модель двухконтурного реактивного двигателя (патент 2334206, G01M 9/08) для исследования попадания посторонних частиц в воздухозаборник летательного аппарата, состоящая из цилиндрического корпуса и расположенной внутри него цилиндрической обечайки, имитирующей разделение входного потока на внешний и внутренний контуры, при этом носовая часть корпуса выполнена с обводами, идентичными обводам мотогондолы и воздухозаборника, причем хвостовые торцы корпуса и обечайки перекрыты установленными с зазором относительно друг друга наклонными сепарационными сетками для задержания попавших в воздухозаборник посторонних частиц, кроме того, модель двигателя снабжена двумя накопительными устройствами для сбора этих частиц.

Известны и другие модели для аэродинамических испытаний двухконтурных воздушно-реактивных двигателей, являющиеся аналогами заявляемого изобретения (авторское свидетельство SU 793094, авторское свидетельство SU 862680, патент RU 2287140, US 3835703, JP 62005145, JP 2002022597, JP 8054334, DE 19902573, US 6276217).

Известные аналоги не предназначены для исследования попадания посторонних частиц в двигатель при взаимодействии набегающего потока с моделью мотогондолы и воздухозаборника двигателя, расположенной над поверхностью взлетно-посадочной полосы.

Ближайшим аналогом является патент RU 2349888, G01M 9/00, в котором представлена модель двухконтурного воздухозаборника, имитирующего вентиляторный (внешний) и газогенераторный (внутренний) контуры двигателя.

Носовая часть модели выполнена с обводами, идентичными обводам воздухозаборника. При испытаниях создают воздушный поток, протекающий через модель воздухозаборника.

Однако в данной модели отсутствует регулирование степени двухконтурности (соотношения расходов воздуха, проходящих через внешний и внутренний контуры) с целью моделирования работы двухконтурного двигателя. Степень двухконтурности двигателя может принимать широкий диапазон значений. Этот параметр определяет, например, характеристику вихревого течения вблизи воздухозаборника и, как следствие, формирует различные траектории движения частиц, подхваченных вихрем. Моделирование степени двухконтурности двигателя при проведении испытаний воздухозаборника позволит обеспечить наиболее полное соблюдение условий аэродинамического подобия при исследовании явления вихревого захвата посторонних частиц и их попадания в воздухозаборник, а также других исследованиях.

Техническим результатом изобретения является устранение указанного недостатка, а именно - обеспечение моделирования дополнительного параметра - степени двухконтурности двигателя.

Технический результат достигается тем, что модель воздухозаборника двухконтурного двигателя летательного аппарата, содержащая внутренний и внешний контуры воздушного потока, имитирующие газогенераторный и вентиляторный контуры двигателя, дополнительно содержит управляемый с внешнего пульта дроссель регулирования площади проходного сечения внутреннего контура.

Дроссель выполнен в виде заслонки с возможностью перемещения вдоль оси внутреннего контура с уменьшением или увеличением площади проходного сечения внутреннего контура. Заслонка имеет коническую форму.

Исследование попадания частиц в воздухозаборник, поднятых вихрем с поверхности взлетно-посадочной полосы (ВПП), необходимо для выдачи рекомендаций при проектировании воздухозаборного устройства и его компоновки на летательном аппарате. Важным условием в обеспечении исследований являются моделирование режимов работы двигателя.

На фиг. 1 изображена модель воздухозаборника двухконтурного двигателя летательного аппарата.

Предлагаемая модель воздухозаборника двухконтурного двигателя летательного аппарата (фиг. 1) состоит из внутреннего 1 и внешнего 2 контуров воздушного потока, имитирующих газогенераторный и вентиляторный контуры двигателя, управляемого с внешнего пульта подвижного дросселя 3 регулирования площади проходного сечения внутреннего контура. Дроссель 3 выполнен в виде заслонки с возможностью перемещения вдоль оси внутреннего контура с уменьшением или увеличением площади проходного сечения внутреннего контура. Заслонка имеет коническую форму.

Модель соединена переходным трубопроводом 4 с эжекторной системой, обеспечивающей и регулирующей суммарный расход воздуха через модель.

Заявленное устройство работает следующим образом.

Создавая разрежение в эжекторной системе, устанавливают (подбирают) необходимый суммарный расход воздуха через модель воздухозаборника. Затем начинают перемещать управляемый с внешнего пульта подвижный дроссель 3, при перемещении которого вдоль оси внутреннего контура 1 изменяется площадь проходного сечения внутреннего контура 1, что приводит к перераспределению расходов воздуха во внутреннем 1 и внешнем контурах 2 модели и обеспечивает моделирование степени двухконтурности двигателя в широком диапазоне значений (то есть тем самым подбирается необходимое значение степени двухконтурности). После установления режима проводятся измерения аэродинамических характеристик модели.

Предлагаемая модель реализована в конструкции и прошла испытания на стенде ЭУ-2 ЦАГИ, смоделировав степень двухконтурности двигателя в пределах от 6 до 10.

Кроме того, дополнительными техническими результатами от использования изобретения являются:

- возможность более точной оценки степени защищенности двигателя от попадания посторонних предметов при проведении испытаний в условиях наиболее полного соблюдения условий аэродинамического подобия явления вихревого захвата посторонних частиц,

- получение картины течения под воздухозаборником, что очень важно для изучения процесса вихреобразования и захвата твердых частиц,

- получение количественной характеристики массы захватываемых частиц в двухконтурный двигатель (с разделением по контурам),

- оценка (в зависимости от режимов) местоположения зоны захвата песка с поверхности взлетно-посадочной полосы.


Модель воздухозаборника двухконтурного двигателя летательного аппарата
Модель воздухозаборника двухконтурного двигателя летательного аппарата
Источник поступления информации: Роспатент

Показаны записи 171-180 из 255.
20.02.2019
№219.016.c162

Способ газификации углеводородов для получения электроэнергии и углеродных наноматериалов

Изобретение относится к экологически безопасным технологиям добычи углеводородов и раздельного использования продуктов их подземной газификации, в частности водорода для получения электроэнергии, а углерода для углеродных наноматериалов. Техническим результатом являются повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002415262
Дата охранного документа: 27.03.2011
20.02.2019
№219.016.c1b8

Способ газификации углеводородов для получения водорода и синтез-газа

Изобретение относится к экологически безопасным технологиям разработки месторождений и добычи углеводородов, в частности трудноизвлекаемых и нерентабельных залежей угля, сланцев, нефти и газового конденсата. Техническим результатом является повышение эффективности проведения подземной...
Тип: Изобретение
Номер охранного документа: 0002423608
Дата охранного документа: 10.07.2011
20.02.2019
№219.016.c228

Способ стабилизации процесса горения топлива в камере сгорания и камера сгорания прямоточного воздушно-реактивного двигателя летательного аппарата

Способ стабилизации процесса горения в камере сгорания прямоточного воздушно-реактивного двигателя, работающей на жидком углеводородном топливе, основан на создании вихревых зон с помощью стабилизаторов пламени в виде плохо обтекаемых тел. В вихревую зону за стабилизаторного пространства...
Тип: Изобретение
Номер охранного документа: 0002454607
Дата охранного документа: 27.06.2012
20.02.2019
№219.016.c230

Универсальная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретения относятся к области экспериментальной аэродинамики, в частности исследований проблем аэроупругости летательных аппаратов. Модель содержит силовой сердечник и одну съемную крышку, сердечник выполнен в виде части профиля, включающей всю верхнюю поверхность, например, крыла, а также...
Тип: Изобретение
Номер охранного документа: 0002454646
Дата охранного документа: 27.06.2012
08.03.2019
№219.016.d34f

Устройство измерения шарнирного момента отклоняемой поверхности

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения шарнирных моментов, действующих на органы управления и взлетно-посадочную механизацию аэродинамических моделей летательных аппаратов в потоке аэродинамической трубы. Устройство содержит механизм...
Тип: Изобретение
Номер охранного документа: 0002681251
Дата охранного документа: 05.03.2019
08.03.2019
№219.016.d51c

Способ определения характеристик штопора модели летательного аппарата и устройство для его осуществления

Изобретения относятся к экспериментальной аэродинамике, в частности к определению характеристик штопора геометрически и динамически подобной свободно летающей модели летательного аппарата (ЛА) в воздушном потоке вертикальной аэродинамической трубы. Способ заключается в запуске в поток...
Тип: Изобретение
Номер охранного документа: 0002410659
Дата охранного документа: 27.01.2011
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
20.03.2019
№219.016.e423

Устройство для получения твердофазных наноструктурированных материалов

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок. В парогазогенераторе 4 готовят многофазную смесь исходного вещества и направляют ее под давлением в газодинамический резонатор 9, где смесь детонирует. Продукты детонационного горения через...
Тип: Изобретение
Номер охранного документа: 0002299849
Дата охранного документа: 27.05.2007
20.03.2019
№219.016.e50a

Способы получения нанодисперсного углерода (варианты) и устройство для их реализации

Изобретение относится к нанотехнологиям и может быть использовано при получении твердофазных наноструктурированных материалов, в частности ультрадисперсных алмазов, фуллеренов и углеродных нанотрубок. Готовят смесь с отрицательным кислородным балансом, состоящую из углеродсодержащего вещества и...
Тип: Изобретение
Номер охранного документа: 0002344074
Дата охранного документа: 20.01.2009
21.03.2019
№219.016.eada

Устройство бесконтактного возбуждения механических колебаний

Изобретение относится к акустике. Устройство бесконтактного возбуждения механических колебаний содержит громкоговоритель и рупор. Поверхность рупора представляет собой криволинейную поверхность постоянной отрицательной кривизны с образующей линией в форме трактрисы, рупор широкой частью...
Тип: Изобретение
Номер охранного документа: 0002682582
Дата охранного документа: 19.03.2019
Показаны записи 1-1 из 1.
12.04.2023
№223.018.43cf

Модель воздухозаборного устройства вспомогательной силовой установки летательного аппарата для испытания в аэродинамической трубе

Изобретение относится к области авиации, к аэродинамическим испытаниям моделей воздухозаборных устройств, в частности к устройству для исследований характеристик потока на входе во вспомогательный газотурбинный двигатель и других исследованиях при заданных условиях эксплуатации ЛА. Модель...
Тип: Изобретение
Номер охранного документа: 0002793637
Дата охранного документа: 04.04.2023
+ добавить свой РИД