×
27.11.2019
219.017.e6eb

Результат интеллектуальной деятельности: Способ переработки бокситов

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С. Предложенный способ обеспечивает извлечение оксида алюминия в раствор, равное 94%, из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера. Кроме того, способ позволяет получать алюминатные растворы с низким содержанием кремния и железа. 2 пр.

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема из бокситов по схеме Байера.

Известен способ получения глинозема из боксита, включающий смешение боксита с щелочно-алюминатным раствором, выщелачивание боксита в автоклавах при температуре 140-250°С в течение 1-2 ч с получением алюминатного раствора с концентрацией щелочи 150-200 г/л Na2Ok и каустическим модулем в конечном алюминатном растворе на 0,03-0,10 единиц выше его равновесного уровня в принятых условиях выщелачивания, отделение шлама от алюминатного раствора, разложение алюминатного раствора с получением гидроксида алюминия и маточного раствора, при этом щелочно-алюминатный раствор получают упариванием маточного раствора, смешением шлама, полученного после выщелачивания боксита в автоклавах с упаренным маточным раствором с концентрацией щелочи 160-260 г/л Na2Ok и каустическим модулем 2,6-3,2, выдержку при температуре 98-110°С, отделением шлама от алюминатного раствора. Степень извлечения глинозема составляет 92,5% (Патент RU 2226174, МПК C01F 7/06, 2004 год).

Недостатком известного способа является наличие технологической операции, связанной с приготовлением пульты из маточного раствора и шлама и ее выщелачиванием, что усложняет технологический процесс производства и требует установки дополнительного бакового оборудования.

Известен способ получения оксида алюминия из средне- и низкосортного боксита, который включает добавление в боксит оборотного маточного раствора и деалюминированного остатка, содержащего трехкальциевый гидроалюминат и кремнезем, полученного путем разделения суспензии после переработки красного шлама с добавлением в нее извести, автоклавное выщелачивание по способу Байера с получением суспензии, которую разделяют с получением раствора алюмината натрия и красного шлама, раствор алюмината натрия далее перерабатывают с получением маточного раствора и оксида алюминия (патент RU 2478574, МПК C01F 7/06, 2011 год).

Недостатком известного способа является необходимость введения в технологию отдельного передела по производству трехкальциевого гидроалюмината, который используют в качестве добавки при выщелачивании. Кроме того, способ обеспечивает относительно невысокую степень выщелачивания (не более 80%).

Наиболее близким по технической сущности является способ получения глинозема из бокситов, включающий добавление к бокситу оборотного раствора процесса Байера и извести, предварительно обожженной при температуре 1400 – 1500°С, автоклавное выщелачивание в две стадии: сначала при температуре 90-95°С, а затем при температуре 220°С, с последующим разбавлением и перемешиванием полученной пульпы при температуре 98-100оС. Способ обеспечивает извлечение оксида алюминия до 92% (Бибанаева С.А., Сабирзянов Н.А., Корюков В.Н., Уфимцев В.М., Абакумов С.А. “Технология получение извести и использование ее при производстве глинозема”, “Естественные и технические науки”, № 5, 2014)(прототип).

Однако известный способ обеспечивает возможность переработки на глинозем с высокой степенью извлечения только хорошо вскрывающихся бокситов гиббситового или гиббсит-бемитового типа, к которым в частности относятся бокситы Тиманского месторождения. При переработки известным способом на глинозем трудно вскрываемых бокситов степень извлечения составляет не более 92%.

Таким образом, перед авторами стояла задача разработать способ переработки, трудно вскрываемых бокситов диаспор или диаспор-бемитового типа обеспечивающим высокую степень извлечения оксида алюминия.

Поставленная задача решена в предлагаемом способе переработки бокситов, включающем добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание, с отделением алюминатного раствора после выщелачивания, в котором обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С.

В настоящее время из патентной и научно-технической литературы не известен способ переработки бокситов с извлечением оксида алюминия с использованием обожженной при 1200-1300°С извести в количестве 12-14 масс.% от массы боксита и проведении стадии выщелачивания в предлагаемых авторами условиях.

В настоящее время производство глинозема (оксида алюминия) осуществляется преимущественно из бокситов гиббситового или гиббсит-бемитового типа. Однако в РФ основные запасы бокситов, находящиеся на Урале, относятся к трудно вскрываемым бокситам диаспорового или диаспор-бемитового типа. Таким образом, является актуальной задача разработки способа извлечения оксида алюминия из бокситов этого типа с обеспечением высокого процента извлечения. Проведенные авторами исследования позволили определить условия и параметры проведения технологического процесса, обеспечивающего высокое извлечение оксида алюминия (до 94%). Использование извести, обожженной при температуре 1200-1300°С, объясняется изменением химических свойств извести (оксида кальция) под влиянием высоких температур. При температурах обжига выше 1300°С происходит изменение параметров кристаллической решетки в сторону уменьшения, в результате чего повышается прочность кристаллической решетки и снижается реакционная способность оксида кальция. Предлагаемый авторами температурный интервал предварительного обжига извести является оптимальным, обеспечивая максимальную реакционную способность извести для активации процесса вскрытия трудно вскрываемых бокситов. При использовании извести, обожженной ниже 1200°С, в количестве менее 12 масс.% от массы боксита степень выщелачивания не превышала 87%, при использовании извести, обожженной выше 1300°С, в количестве более 14 масс.% от массы боксита степень выщелачивания не превышала 88%. Существенными являются параметры проведения процесса выщелачивания, обеспечивающие разложения и перевода в раствор максимально возможного количества оксида алюминия. Выщелачивание осуществляли при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 МПа и температуре 230-235°С. Жесткие условия процесса обусловлены минералогическим составом бокситов диаспорового или диаспор-бемитового типа, который осложняет вскрытие сырья по сравнению с другими глиноземсодержащими минералами. Так, при снижении соотношения жидкое : твердое, менее 3.0:1, снижении давления ниже 30атм и температуры ниже 230 степень извлечения оксида алюминия в раствор снижается до 86-87%, при повышении соотношения жидкое : твердое, более 3.5:1, при повышении давления выше 32атм и температур выше 235° степень извлечения оксида алюминия в раствор также снижается до 88%. Предлагаемый способ позволяет упростить технологический процесс, поскольку позволяет исключить дополнительное предварительное низкотемпературное выщелачивание.

Предлагаемый способ может быть осуществлен следующим образом. Осуществляют автоклавное выщелачивание “сырой” пульпы, полученной путем добавления в боксит, в частности в боксит Северо-уральского месторождения, оборотного раствора и обожженной при температуре 1200-1300°С извести в количестве 12-14 масс.% от массы боксита. Выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С, в течение 2-2,5 часов. Затем отключают нагрев, охлаждают автоклав до комнатной температуры и открывают. Полученный продукт фильтруют. Алюминатный раствор помещают в отдельную емкость. Проводят химический анализ алюминатного раствора с целью определения содержания алюминия, натрия, кремния и железа. Определяют извлечение оксида алюминия в раствор. Определяют извлечение по формуле: Вхим= 1- (Ашл*Feб/ Аб *Feшл)*100, где Аб и Fб - содержание Al2O3 и Fe2O3 в боксите, % и Ашл и Fшл - содержание Al2O3 и Fe2O3 в шламе, %. Кремневый модуль определяют по формуле: µSi= Al2O3/ SiO2, где Al2O3 и SiO2 –содержание алюминия и кремния в алюминатном растворе, г/л.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Масса навески 15 г. Берут 13,2 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 1,8г (12% масс.) отожженной при температуре 1200°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 30атм, включают нагрев до температуры 230°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028, кремневый модуль – 528, степень выщелачивания составила 94%.

Пример 2. Масса навески 15 г. Берут 12,9 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 2,1 г (14% масс.) отожженной при температуре 1300°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 32атм, включают нагрев до температуры 235°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028 , кремневый модуль – 528, степень выщелачивания составила 94%.

Таким образом, авторами предлагается простой, эффективный способ извлечения оксида алюминия в раствор из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера, обеспечивающий высокое извлечение равное 94%, высокий кремневый модуль и низкое содержание железа в алюминатном растворе.

Способ переработки бокситов, включающий добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание с отделением алюминатного раствора после выщелачивания, отличающийся тем, что обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 99.
25.08.2017
№217.015.9db4

Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа

Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического...
Тип: Изобретение
Номер охранного документа: 0002610616
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9fba

Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава LiLaNdHoErDyHfO, где x=2.5⋅10-1⋅10, y=1.6⋅10-4.7⋅10, z=1.5⋅10, n=1.2⋅10-4.7⋅10. Также предложен его способ...
Тип: Изобретение
Номер охранного документа: 0002606229
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f3ca

Способ получения гетеронаноструктур ags/ag

Изобретение относится к области получения нанокристаллических композиционных материалов, содержащих полупроводниковые и металлические наночастицы, и может быть использовано в оптоэлектронике и наноэлектронике в качестве переключателей сопротивления и энергонезависимых устройствах памяти. Способ...
Тип: Изобретение
Номер охранного документа: 0002637710
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
Показаны записи 11-11 из 11.
08.08.2020
№220.018.3e11

Средство для лечения пародонтита и способ лечения пародонтита

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано в терапии при лечении воспалительных заболеваний пародонта. Предлагаемое средство для лечения пародонтита содержит кремнийорганический глицерогидрогель, гидроксиапатит и активную добавку, причем в...
Тип: Изобретение
Номер охранного документа: 0002729428
Дата охранного документа: 06.08.2020
+ добавить свой РИД