×
21.11.2019
219.017.e480

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптико-электронной техники и касается способа измерения радиуса пространственной когерентности локационных оптических сигналов. Способ включает в себя облучение объекта отражения когерентным оптическим излучением, детектирование опорного, отраженного от объекта и смешанного опорного и отраженного излучения матричным фотоприемником, каждый фоточувствительный элемент которого имеет координатную привязку. Из суммарного фототока каждого фоточувствительного элемента выделяют переменную составляющую, вычисляют максимальное значение переменной составляющей фототока каждого фоточувствительного элемента и вычисляют величину фазового рассогласования между частями смешиваемых оптических излучений, падающих на каждый фоточувствительный элемент. По координатам фоточувствительных элементов с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение радиуса пространственной когерентности отраженного от объекта оптического излучения. Технический результат заключается в повышении точности измерений. 2 ил.

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, [1]) измерения радиуса пространственной когерентности лазерного излучения, основанный на освещении рассеивающего объекта лазерным излучением, приеме рассеянного излучения из области фокусировки исследуемого излучения одновременно в двух точках, преобразовании интенсивности рассеянного излучения в электрические сигналы, определении их взаимной корреляционной функции, определении радиуса пространственной когерентности ρк по значению расстояния ρ между фотоэлементами, корреляционная функция выходных сигналов которых уменьшается в m раз по формуле

Недостатком способа является недостаточная точность измерения ρк оптического излучения, обусловленная оценкой его значения по интенсивности принимаемого излучения. В дополнение, в случае рассеянного излучения малой мощности возникает дополнительное ограничение в его приеме, которое также влияет на достоверность результата.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности измерения ρк оптического излучения.

Сущность изобретения заключается в измерении ρк локационных оптических сигналов на основе оценки фазовых соотношений принимаемого и опорного излучений на поверхности матричного фотоприемника (МФП).

Технический результат достигается тем, что в известном способе измерения ρк локационных оптических сигналов, основанном на облучении объекта отражения когерентным оптическим излучением, детектируют опорное когерентное оптическое излучение МФП, каждый фоточувствительный элемент которого имеет координатную привязку, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента МФП, где - координатный номер фоточувствительного элемента МФП, вызванного действием опорного когерентного оптического излучения, детектируют отраженное от объекта отражения оптическое излучение МФП, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента МФП, вызванного действием отраженного от объект отражения оптического излучения, смешивают отраженное от объекта отражения оптическое излучение с опорным когерентным оптическим излучением, детектируют смешанное оптическое излучение МФП и выделяют из суммарного фототока каждого ij фоточувствительного элемента МФП переменную составляющую как вычисляют максимальное значение переменной составляющей фототока каждого фоточувствительного элемента МФП по формуле вычисляют величину фазового рассогласования между частями смешиваемых оптических излучений падающих на каждый фоточувствительный элемент, как отношение по координатам фоточувствительных элементов МФП с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение ρк оптического излучения отраженного от объекта отражения.

Степень согласованности колебаний (когерентности) в поперечном сечении оптического излучения, фактически, определяется степенью неизменности фаз рассматриваемых колебаний в различных точках пространства. Следовательно, степень когерентности оптических колебаний проявляется при интерференции, которая определяется фазовыми соотношениями смешиваемых волн источников излучения (см., например, [2] стр. 84). Использование фазовых характеристик принимаемого поля дают более точные результаты измерений различный параметров, так как среда распространения имеет меньшее на их влияние (см., например, [2] стр. 92). В условиях смешивания двух излучений ширина контрастности интерференционной картины практически будет определяться волной с наименьшим ρк. Следовательно, смешивая отраженный сигнал с опорным с большей степенью когерентности можно по фазовым соотношениям измерить его ρк.

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - МФП; 2 - интерференционное изображение смешиваемых волн на площадке МФП; 3 - граница области «развала» интерференционной изображения смешиваемых волн на площадке МФП; 4 - источник когерентного оптического излучения (ИКОИ); 5 - формирующая оптика; 6 - объект локации; ρк - радиус пространственной когерентности оптического излучения.

Излучение ИКОИ 4 делят формирующей оптикой 5 два потока. Направляют первый поток на объект 6. Второй оптический поток с помощью формирующей оптики 5 направляют на МФП 1, каждый фоточувствительный элемент которого имеет координатную привязку. Детектируют второй оптический поток МФП 1, измеряют и запоминают значение величины фототока iОПОР каждого фоточувствительного элемента. Смешивают отраженный от объекта 6 оптический поток с помощью формирующей оптики 5 со вторым оптическим потоком. При смешивании волн анализируемого и опорного излучений амплитуда сигнала каждого фоточувствительного элемента МФП 1 будет определяться степенью фазового согласования Δϕ на его площадке (см., например, [3 стр. 93]). Детектируют смешанный оптический поток МФП 1. При этом выходной ток каждого фоточувствительного элемента МФП 1 образуют постоянная и переменная составляющие i=iПОС+iПЕР. Значение iПЕР при пространственной, поляризационной и частотной согласованности определяется как а значение iПОС, как iОПОР+iC, где iОПОР, iC - постоянные составляющие фототока, вызванные действием поля только опорного или сигнального (анализируемого) оптических излучений. С целью получения значения Δϕ на поверхности каждого фоточувствительного элемента МФП 1 выделяют из суммарного фототока каждого фоточувствительного элемента переменную составляющую, используя запомненные значения iОПОР, iСiПЕР=i-(iC+iОПОР), а так же вычисляют максимальное значение переменной составляющей фототока iПЕРмах (при Δϕ=0) каждого фоточувствительного элемента МФП 1 по формуле Величину Δϕ между частями смешиваемых оптических потоков, падающих на каждый фоточувствительный элемент МФП 1, вычисляют как отношение В результате получают координатную матрицу значений Δϕ, которая характеризует интерференцию смешиваемых потоков 2 или ее отсутствие. Пространственная область постоянных значений (нулевых) Δϕ характеризует отсутствие интерференции смешиваемых потоков, а область переменных значений Δϕ - интерференцию смешиваемых потоков 2. Область переменных значений Δϕ имеет границу 3, которая определяет ρк. Следовательно, по координатам фоточувствительных элементов МФП 1 с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение ρк оптического излучения отраженного от объекта отражения (с учетом преобразования оптических потоков формирующей оптикой).

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает оптически связанные: объект 6, ИКОИ 4, разделительную пластину 7; зеркало 8, поляризатор 9, МФП 1, выходы которого подсоединены к входам, информационно связанных микропроцессора 10 и запоминающего устройства 11 Устройство работает следующим образом. Излучение ИКОИ 4 делят разделительной пластиной 7 два потока. Поляризатор 9 исключает влияние поляризационного несогласования детектируемых полей на величину выходных сигналов МФП 1. Направляют первый поток на объект 6. Второй оптический поток с помощью разделительной пластиной 7 и зеркала 8 направляют на МФП 1. Детектируют второй оптический поток МФП 1, измеряют значение величины фототока каждого фоточувствительного элемента и передают их значения и значения соответствующих координат фоточувствительного элемента в запоминающее устройство 11. Детектируют отраженный от объекта 6 оптический поток МФП 1, измеряют значение величины фототока каждого фоточувствительного элемента и передают их значения и значения соответствующих координат фоточувствительного элемента в запоминающее устройство 11. Смешивают отраженный от объекта 6 оптический поток с помощью разделительной пластиной 7 и зеркала 8 со вторым оптическим потоком. Детектируют смешанный оптический поток МФП 1, измеряют значение величины фототока каждого фоточувствительного элемента и передают их значения и значения соответствующих координат фоточувствительного элемента в микропроцессор 10. Микропроцессор 10 считывает данные из запоминающего устройства 11 и вычисляет значение ρк.

Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении точности измерения ρк за счет оценки фазовых соотношений принимаемого и опорного излучений на поверхности МФП. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ измерения ρк локационных оптических сигналов, основанный на облучении объекта отражения когерентным оптическим излучением, детектировании опорного когерентного оптического из лучения МФП, каждый фоточувствительный элемент которого имеет координатную привязку, измерении и запоминании значения величины фототока каждого фоточувствительного элемента МФП, где - координатный номер фоточувствительного элемента МФП, вызванного действием опорного когерентного оптического излучения, детектировании отраженного от объекта отражения оптического излучения МФП, измерении и запоминании значения величины фототока каждого фоточувствительного элемента МФП, вызванного действием отраженного от объекта отражения оптического излучения, смешивании отраженного от объекта отражения оптического излучения с опорным когерентным оптическим излучением, детектировании смешанного оптического излучения МФП и выделении из суммарного фототока каждого ij фоточувствительного элемента МФП переменной составляющей как вычислении максимального значения переменной составляющей фототока каждого фоточувствительного элемента МФП по формуле вычислении величины фазового рассогласования между частями смешиваемых оптических излучений Δϕj, падающих на каждый фоточувствительный элемент, как отношение определении по координатам фоточувствительных элементов МФП с постоянными значениями величин фазовых рассогласований координат границы области отсутствия интерференции смешиваемых оптических излучений, вычислении по значениям которых значения ρк оптического излучения отраженного от объекта отражения.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы оптические и оптико-электронные узлы и устройства.

1 Авторское свидетельство SU №1429705. Способ измерения радиуса пространственной когерентности. Беленький М.С., Глушков А.Н., Нетреба П.И., Покасов В.В. МПК G01J 3/00. 4 с. Регистрация 12.01.87. Опубл. 07.10.92 г. Бюл. 37.

2 Беленький М.С., Лукин В.П., Миронов В.Л, Покасов В.В. Когерентность лазерного излучения в атмосфере. М.: «Наука», 1985. 176 с.

Способ измерения радиуса пространственной когерентности локационных оптических сигналов, основанный на облучении объекта отражения когерентным оптическим излучением, отличающийся тем, что детектируют опорное когерентное оптическое излучение матричным фотоприемником, каждый фоточувствительный элемент которого имеет координатную привязку, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента матричного фотоприемника, где - координатный номер фоточувствительного элемента матричного фотоприемника, вызванного действием опорного когерентного оптического излучения, детектируют отраженное от объекта отражения оптическое излучение матричным фотоприемником, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента матричного фотоприемника, вызванного действием отраженного от объекта отражения оптического излучения, смешивают отраженное от объекта отражения оптическое излучение с опорным когерентным оптическим излучением, детектируют смешанное оптическое излучение матричным фотоприемником и выделяют из суммарного фототока каждого i фоточувствительного элемента матричного фотоприемника переменную составляющую как вычисляют максимальное значение переменной составляющей фототока каждого фоточувствительного элемента матричного фотоприемника по формуле вычисляют величину фазового рассогласования между частями смешиваемых оптических излучений Δϕ, падающих на каждый фоточувствительный элемент, как отношение по координатам фоточувствительных элементов матричного фотоприемника с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение радиуса пространственной когерентности оптического излучения отраженного от объекта отражения.
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 244.
19.01.2018
№218.016.046f

Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем. Предложенный способ компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного...
Тип: Изобретение
Номер охранного документа: 0002630531
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.047c

Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем. Способ компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного гироскопа...
Тип: Изобретение
Номер охранного документа: 0002630533
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0932

Устройство для измерения разности фаз радиосигналов

Изобретение относится к радиотехнике и может быть использовано в радиопеленгаторах, средствах радиомониторинга, системах фазовой автоподстройки частоты, системах синхронизации различного назначения и аналогичных средствах и системах, в которых осуществляются измерения разности фаз радиосигналов...
Тип: Изобретение
Номер охранного документа: 0002631668
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0d69

Пьезорезонансный датчик для определения относительной влажности воздуха

Использование: для определения влажности атмосферного воздуха. Сущность изобретения заключается в том, что пьезорезонансный датчик содержит камеру с генератором частоты колебаний пьезорезонатора, пьезорезонатор и частотомер, камера оснащена изменителем и измерителем температуры, последовательно...
Тип: Изобретение
Номер охранного документа: 0002632997
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0dd9

Пиротехнический патрон инфракрасного излучения

Изобретение относится к области военной техники, а именно к боеприпасам для создания ложных целей, имитирующих нагретые агрегаты летательного аппарата и предназначенных для их защиты от оружия противника с тепловыми системами наведения. Пиротехнический патрон инфракрасного излучения содержит...
Тип: Изобретение
Номер охранного документа: 0002633012
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0e44

Осевой компрессор

Изобретение относится к области авиационного двигателестроения и может быть использовано в осевых компрессорах. Изобретение от известных отличается тем, что в осевом компрессоре, состоящем из N ступеней, каждая из которых содержит корпус, направляющий аппарат, рабочее колесо, установленное на...
Тип: Изобретение
Номер охранного документа: 0002633221
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.142c

Способ защиты вертолета от управляемых боеприпасов

Способ защиты вертолета от управляемых боеприпасов заключается в поиске с борта вертолета оптического излучения управляемого боеприпаса (УБП), включает отстрел аэрозолеобразующего боеприпаса в направлении полета вертолета и формирование на установленной дистанции аэрозольного облака,...
Тип: Изобретение
Номер охранного документа: 0002634798
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1479

Устройство для экспресс-анализа качества продуктов

Изобретение предназначено для экспрессного анализа «на месте» жидких и твердых продуктов по концентрации их газов-маркеров. Устройство для экспресс-анализа качества продуктов включает один пьезосенсор с чувствительным пленочным покрытием для сорбции газов-маркеров, встроенный в держатель крышки...
Тип: Изобретение
Номер охранного документа: 0002634803
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.14d5

Ветроэнергетическая установка

Изобретение относится к ветроэнергетике. Ветроэнергетическая установка содержит платформу, выполненную в виде многолучевой звезды с возможностью вращения вокруг собственной оси симметрии, и парусные элементы, установленные на концах лучей указанной звезды, выполненные с возможностью вращения...
Тип: Изобретение
Номер охранного документа: 0002635010
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.1596

Боевой элемент с координатором цели

Изобретение относится к области ракетной техники и, в частности, к боевым элементам реактивных снарядов. Технический результат - повышение надежности работы устройства за счет возможности корректирования траектории его движения для сближения с целью. Боевой элемент с координатором цели...
Тип: Изобретение
Номер охранного документа: 0002634875
Дата охранного документа: 07.11.2017
Показаны записи 31-40 из 51.
22.08.2018
№218.016.7e34

Способ повышения разрешения изображения

Способ повышения разрешения изображения заключается в приеме оптического излучения матричным фотоприемником (МФПУ), измерении и запоминании параметров выходных сигналов фоточувствительных элементов (ФЧЭ) МФПУ и формировании по их значениям изображения. При этом одновременно по всем ФЧЭ МФПУ...
Тип: Изобретение
Номер охранного документа: 0002664540
Дата охранного документа: 20.08.2018
24.11.2018
№218.016.a0cd

Способ защиты объектов от телевизионных средств космического наблюдения

Изобретение относится к области защиты объектов путем постановки аэрозольных образований и может быть использовано для маскировки объектов. Определяют параметры метеообстановки, координаты и интенсивность сброса аэрозолеобразующего состава (АОС), формируют аэрозольную завесу (AЗ). Сканируют по...
Тип: Изобретение
Номер охранного документа: 0002673169
Дата охранного документа: 22.11.2018
13.01.2019
№219.016.af38

Способ поиска оптических и оптико-электронных приборов

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без...
Тип: Изобретение
Номер охранного документа: 0002676856
Дата охранного документа: 11.01.2019
20.02.2019
№219.016.c139

Способ защиты мобильных средств от радио, радиолокационных, оптикоэлектронных средств разведки и поражения с использованием комбинированных ложных целей и устройство для его осуществления

Изобретение относится к способам защиты мобильных средств связи (МСС) от средств разведки (радио, радиолокационной, оптикоэлектронной) и поражения. Достигаемый технический результат - повышение живучести МСС за счет использования имитации демаскирующих признаков объекта в радиолокационном,...
Тип: Изобретение
Номер охранного документа: 0002410710
Дата охранного документа: 27.01.2011
23.02.2019
№219.016.c6c3

Способ защиты объектов от радиолокационных огневых комплексов

Изобретение относится к области систем защиты объектов от средств воздушной разведки, прицеливания и наведения путем формирования ложной радиолокационной обстановки и может быть использовано для радиолокационной маскировки индивидуальных и групповых стационарных объектов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002680515
Дата охранного документа: 22.02.2019
10.07.2019
№219.017.a98b

Способ определения координат источника радиоизлучения

Изобретение относится к области радиотехники, а именно к пассивным системам радиомониторинга, и, в частности, может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Технический результат – повышение эффективности определения координат ИРИ забрасываемыми...
Тип: Изобретение
Номер охранного документа: 0002693936
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b275

Способ определения пространственной ориентации луча излучения лазерного локационного средства

Изобретение может быть использовано в системах лазерной локации для определения местонахождения объектов в пространстве. Сущность изобретения заключается в осуществлении пространственной обработки двух последовательно получаемых матричным фотоприемным устройством изображений принятых отраженных...
Тип: Изобретение
Номер охранного документа: 0002694121
Дата охранного документа: 09.07.2019
29.08.2019
№219.017.c452

Способ формирования ложной оптической цели

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения. Достигаемый технический результат –...
Тип: Изобретение
Номер охранного документа: 0002698466
Дата охранного документа: 27.08.2019
29.08.2019
№219.017.c4b2

Способ скрытия оптико-электронного средства от лазерных систем

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Достигаемый технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002698465
Дата охранного документа: 27.08.2019
01.09.2019
№219.017.c523

Способ скрытия оптико-электронных средств

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Способ скрытия оптико-электронного средств (ОЭС)...
Тип: Изобретение
Номер охранного документа: 0002698569
Дата охранного документа: 28.08.2019
+ добавить свой РИД