×
16.11.2019
219.017.e30b

Результат интеллектуальной деятельности: КОЛЛИМАТОР ДЛЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n - натуральное число, пластин из прозрачного для рентгеновского излучения материала, а толщина каждой из этих пластин D определяется соотношением D=D+h(D+d)/2/f((k-1)/i-1)), где d - толщина пластины из материала с высоким коэффициентом поглощения рентгеновского излучения, D - средняя высота зазора между пластинами толщиной d, f - расстояние от источника излучения до середины коллиматора, k - номер пластины по ходу излучения; набор пластин образует периодическую решетку с периодом d+D. Обеспечена фокусировка периодической решетки на источник излучения; часть пластин толщиной d вместе с прилегающими пластинами толщиной D в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора. В возможном варианте устройства пластины в области рабочего отверстия коллиматора установлены с возможностью взаимного перемещения для обеспечения регулирования размеров рабочего центрального отверстия с помощью шаблона заданного сечения. Техническим результатом является возможность регистрировать изображение всего объекта или его большой части при селективном подавлении рассеянного излучения, а также увеличить объем получаемой в одном эксперименте информации за счет перестраиваемой формы поперечного сечения центрального отверстия коллиматора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области рентгеновской техники, а более конкретно,. к устройствам формирования пучков рентгеновского излучения. Оно предназначено для формирования пучка рентгеновского излучения, прошедшего объект исследования, путем селективного снижения уровня рассеянного рентгеновского излучения, попадающего на систему регистрации, при высокой эффективности использования информационных квантов в центральной части пучка, что повышает достоверность рентгеновской регистрации. Может быть использовано в импульсной рентгенографии быстропротекающих процессов.

Классическая схема установки для исследования оптически толстых, объектов во взрывном эксперименте методом теневой рентгенографии содержит источник излучения и коллиматор, ограничивающий поле облучения, размещаемые в защитном сооружении, собственно объект исследования, следующий далее формирующий коллиматор, подавляющий рассеянное излучение, размещаемый между объектом исследования и регистратором, и регистратор рентгеновских изображений [В.В. Клюев и др. Промышленная радиационная интроскопия. - Энергоатомиздат, 1985.1]. Кроме того, установка содержит и другое оборудование.

При просвечивании оптически толстых объектов жестким тормозным излучением, поток первичных квантов, прошедших объект и несущий информацию о геометрии объекта исследования, ослабляется на 4-6 порядков. При этом, как сам объект, так и вспомогательное оборудование эксперимента (коллиматоры, защита, регистратор) становятся источником рассеянного излучения. Поле облучения ограничивается первым коллиматором. Для съемки периферической части объекта уровень излучения обычно оказывается избыточным, и в геометрию рентгенографии добавляются компенсационные фильтры, обеспечивающие попадание в динамический диапазон системы регистрации. Перепад оптической толщины по объекту может составлять 3-4 порядка, при этом периферическая часть объекта становится источником рассеянного излучения, многократно превышающего уровень излучения, прямо проходящего через центральную часть и формирующего изображение объекта. Попадая на систему регистрации, это излучение приводит к уменьшению контраста изображения деталей исследуемого объекта, а, следовательно, и чувствительности рентгенографической методики. Для селективного снижения уровня рассеянного излучения, попадающего на систему регистрации, используются формирующие коллиматоры различных конструкций.

Известен способ селективного подавления рассеянного излучения с помощью отсеивающих решеток [Рентгенотехника справочник, книга 1, М. Машиностроение, 1930, с. 376-383. 2]. В простейшем случае элемент подавления рассеяния, расположенный за объектом исследования, представляет собой набор пластин из материала с высоким коэффициентом поглощения рентгеновского излучения толщиной d и длиной по ходу излучения h, которые чередуются с пластинами (заполнителем) толщиной D из материала прозрачного к рентгеновскому излучению. Селективное подавление рассеянного излучения достигается ориентацией пластин на источник излучения.

Характерными параметрами решетки являются: частота растра N=1/(D+d) - количество абсорбирующих пластин на 1 см; отношение растра r=h/D, фокусное расстояние f0. Производными этих величин являются: прозрачность решетки для первичного излучения Тр; прозрачность решетки для рассеянного излучения Ts; избирательность, фактор улучшения контраста. Достоинством решетки является возможность съемки всего объекта с подавлением рассеянного излучения. Изображение решетки на рентгеновском снимке удаляется при его цифровой обработке, например с помощью частотного фильтра.

Существенным недостатком при использовании решетки в импульсной рентгенографии, является ослабление потока информационных квантов в 3-4 раза по сравнению с потоком без решетки, определяемое геометрической прозрачностью и погрешностями юстировки.

В качестве прототипа выбирается обычный коллиматор [1] представляющий собой массивное тело из материала с высоким коэффициентом ослабления рентгеновского излучения, имеющее отверстие в центральной части, через которое проходят прямопролетные кванты, несущие информацию о структуре объекта [В.В. Клюев и др. Промышленная радиационная интроскопия. - Энергоатомиздат, 1985, с. 20-24.1]. Длина тела коллиматора по ходу излучения h должна быть значительно больше длины половинного ослабления рентгеновского излучения λ для материала коллиматора (h>10λ). Для эффективного подавления уровня рассеянного излучения продольный размер коллиматора должен быть существенно больше диаметра отверстия и само отверстие достаточно малым. При этом получается изображение только малой части объекта исследования, то есть регистрируется только центральная часть объекта, определяемая диаметром центрального отверстия коллиматора, что является недостатком описанного варианта коллиматора - прототипа.

Кроме того, форма поперечного сечения центрального отверстия является фиксированной. Для ее изменения необходимо изготовление другого образца коллиматора и необходимость постановки нового эксперимента.

Технической проблемой изобретения является повышение информативности и достоверности регистрации при обеспечении технологичности с точки зрения получения объема информации в одном постановочном эксперименте.

Достигаемый технический результат состоит в следующем:

Обеспечена возможность регистрировать изображение всего объекта или его большой части при селективном подавлении рассеянного излучения.

Кроме того, коллиматор имеет перестраиваемую форму поперечного сечения центрального отверстия, что позволяет увеличить объем получаемой в одном эксперименте информации.

Данный технический результат достигается за счет того, что в отличие от известного коллиматора для жесткого рентгеновского излучения, представляющего собой тело коллиматора с центральным отверстием, содержащим материал с высоким коэффициентом поглощения рентгеновского излучения, причем длина тела коллиматора по ходу излучения h значительно больше длины половинного ослабления рентгеновского излучения λ в теле коллиматора, в предложенном коллиматоре, тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n - натуральное число, пластин из прозрачного для рентгеновского излучения материала, а толщина каждой из этих пластин Dk определяется соотношением Dk=D+h(D+d)/2/f0((k-1)/i-1)), где d - толщина пластины из материала с высоким коэффициентом поглощения рентгеновского излучения, D - средняя высота зазора между пластинами толщиной d, f0 - расстояние от источника излучения до середины коллиматора, k - номер пластины по ходу излучения; набор пластин образует периодическую решетку с периодом d+D, при этом обеспечена фокусировка периодической решетки на источник излучения; часть пластин толщиной d вместе с прилегающими пластинами толщиной Dk в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора. Коллиматор, отличается тем, что пластины в области рабочего отверстия коллиматора установлены с возможностью взаимного перемещения для обеспечения регулирования размеров рабочего центрального отверстия с помощью шаблона заданного сечения.

В заявляемом техническом решении тело коллиматора формируется набором пластин толщиной d из материала с высоким коэффициентом поглощения рентгеновского излучения, например тантала или вольфрама (металла), которые разделены полосками-пластинами толщиной Dk из прозрачного для рентгеновского излучения материала, например лавсана, образующих отсеивающую решетку, сфокусированную на источник излучения. Толщина пластин выбирается, исходя из заявляемого соотношения, а именно, толщина каждой из этих пластин Dk определяется соотношением Dk=D+h(D+d)/2/f0((k-1)/i-1)), где d - толщина металлической пластины, D - средняя высота зазора между металлическими пластинами, f0 - расстояние от источника излучения до середины коллиматора, а k - номер пластины по ходу излучения. Количество пластин толщиной Dk определяется, как 2i+1, где i от 1 до n - натуральное число. Такой выбор геометрии, построенный на основе ее классических законов, обусловлен необходимостью обеспечения ослабления рассеянного, излучения и прозрачности для прямо проходящего излучения.

Пластина d с прикрепленными к ней полосками пластика - пластинами Dk образует элементы, из которых набирается коллиматор. Имеется две группы пластин. Одна - полной ширины коллиматора, вторая половинной ширины. Иными словами, часть пластин толщиной d вместе с прилегающими пластинами толщиной Dk в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора. Для выставления отверстия коллиматора может быть использован шаблон. При этом в центральную часть коллиматора устанавливается шаблон (например цилиндрическая труба) профиля коллиматора. Пластины половинной ширины сдвигаются до соприкосновения с шаблоном, формируя требуемый профиль. Профиль, в пределах габаритного размера центральной части коллиматора может быть произвольным. Из пластин полной ширины формируется периферическая часть тела коллиматора. Селективное подавление рассеянного излучения вне отверстия коллиматора достигается ориентацией пластин на источник излучения, а в отверстии за счет большого отношения длины тела коллиматора к диаметру центрального отверстия. При этом в центральной части пучок квантов излучения, несущих информацию об объекте исследования, проходит без ослабления.

Кроме того, пластины в области рабочего отверстия коллиматора могут быть установлены с возможностью взаимного перемещения для обеспечения регулирования размеров рабочего центрального отверстия с помощью шаблона заданного сечения, что позволит перестраивать форму отверстия коллиматора.

Такое выполнение приводит к достижению технического результата. В общем случае форма выполнения коллиматора из пластин разной толщины, выбранной в соответствии с заявляемым соотношением, позволяет регистрировать весь объект и отсечь влияние на результат регистрации паразитного излучения, максимально сохранив при этом влияние полезного излучения (в зоне рабочего отверстия коллиматора), что увеличит объем и повысит достоверность получаемой в эксперименте информации. При этом выполнение коллиматора составным сделает эксперимент более технологичным по сравнению с прототипом, а дополнительное расширение возможностей за счет обеспечения подвижности частей позволит увеличить объем зарегистрированной информации в одном постановочном эксперименте.

На фиг. 1 схематично изображена постановка эксперимента с коллиматором, образованным телом коллиматора, имеющим центральное отверстие, выполненным из заявляемого набора пластин, где 1 - источник излучения, 2 - объект исследования, 3 - коллиматор, 4 - пластина металлическая толщиной d, 5 - пластины - полоски пластика толщиной Dk, 6 - регистратор изображения

На фиг. 2 схематично показано как может быть сформировано центральное рабочее отверстие в теле коллиматора.

Заявляемое решение может быть реализовано следующим образом.

Суть решения схематично изложена на фиг. 1. Тело коллиматора (3) выполняется из набора металлических пластин (выполненное из материала с высоким коэффициентом поглощения рентгеновского излучения, например, из тантала) толщиной d (4), к которым приклеены полоски пластика (например, из лавсана) толщиной Dk (5) переменной в сборе толщины, причем тело коллиматора выполнено из двух частей (за счет того, что часть пластин толщиной d вместе с прилегающими слоями в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора), помещая между которыми шаблон (например, трубу диаметром 40 мм), как показано на фиг. 2, формируется центральное отверстие заданного профиля. Для эффективного подавления жесткой компоненты рассеянного излучения отношение растра, h/(D+d) должно быть более 100 [Scott Watson at al. "Design, fabrication, and testing of a lage anty-scatter Bucky grid for megavolt γ-ray imaging", IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., Oct. 23-29, 2005, v. 2, p. 717-721. 3]. Выбрав толщину пластины из тантала равной 0,5 мм, геометрическую прозрачность 0,5, получаем D+d=1 мм и размер по ходу луча h>100 мм.

К металлической пластине должны быть, например, приклеены по крайней мере три полоски пластика разной толщины, причем толщины полосок выбираются исходя из фокусного расстояния (f0 на фиг. 1), на которое настраивается коллиматор. Например, для коллиматора, настроенного на расстояние 3 м, при h=120 мм, шаге решетки 1 мм, и геометрическом коэффициенте ослабления первичного излучения равном 2, толщины передней, средней и задней полосок-пластин из лавсана по ходу излучения должны быть равны 0,48 мм, 0,50 мм и 0,52 мм, соответственно. Набрав, например, 100 пластин шириной 200 мм и 200 пластин, размещаемых в центральной части, шириной 100 мм, получаем коллиматор с рабочим полем 200*200 мм. Весь набор пластин помещается в конструктив - корпус коллиматора, обеспечивающий сборку с необходимой точностью и юстировку коллиматора относительно источника излучения. От точности юстировки будет зависеть фактор ослабления первичного излучения в зоне перекрываемой решеткой. В результате съемки объекта через такой коллиматор на регистраторе получается изображение объекта в пределах 200*200 мм при селективном подавлении рассеянного излучения. В области центрального отверстия поток информационных квантов не ослабляется телом коллиматора. Заменяя шаблон и заново собирая коллиматор, изменяем размеры и форму центрального отверстия в соответствии с требованиями конкретного эксперимента.

В эксперименте обеспечена возможность регистрировать изображение всего объекта или его большой части при селективном подавлении рассеянного излучения. Кроме того, коллиматор имеет перестраиваемую форму поперечного сечения центрального отверстия, что позволяет увеличить объем получаемой в одном эксперименте информации.


КОЛЛИМАТОР ДЛЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
КОЛЛИМАТОР ДЛЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 796.
13.01.2017
№217.015.808d

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам и может быть использовано для охраны помещений и объектов различного назначения. Устройство для охранной сигнализации содержит корпус, подпружиненный относительно корпуса подвижный элемент, магнитоэлектрический генератор, вал которого во взведенном...
Тип: Изобретение
Номер охранного документа: 0002602227
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81ec

Источник металлической плазмы (варианты)

Изобретение относится к источникам металлической плазмы (варианты) и может быть использовано для нанесения защитных, упрочняющих и декоративных покрытий методом катодного распыления на внутренние поверхности изделий, в частности на внутренние поверхности тел вращения, как открытых, так и...
Тип: Изобретение
Номер охранного документа: 0002601725
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8237

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного...
Тип: Изобретение
Номер охранного документа: 0002601772
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8298

Зарядное устройство емкостного накопителя энергии

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии. В зарядное устройство емкостного накопителя энергии, содержащее входной трехфазный...
Тип: Изобретение
Номер охранного документа: 0002601437
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82ae

Резонансный генератор импульсов

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора,...
Тип: Изобретение
Номер охранного документа: 0002601510
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82f2

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга. При этом четыре датчика размещены в экваториальной плоскости МК,...
Тип: Изобретение
Номер охранного документа: 0002601505
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.866c

Способ гиперскоростного метания металлического элемента и кумулятивное метающее устройство для его осуществления

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает...
Тип: Изобретение
Номер охранного документа: 0002603660
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.866e

Гольмиевый лазер для накачки параметрического генератора света

В гольмиевом лазере для накачки параметрического генератора света, включающем источник накачки и размещенные в двухпроходном оптическом резонаторе активный элемент, модулятор добротности, выполненный из материала с кристаллической структурой, новым является то, что модулятор добротности...
Тип: Изобретение
Номер охранного документа: 0002603336
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8675

Система термостабилизации приборного отсека космического аппарата

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы. Радиатор-излучатель выполнен в виде цилиндрического экрана с...
Тип: Изобретение
Номер охранного документа: 0002603690
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8678

Способ формирования гиперскоростного металлического компактного элемента и кумулятивное метающее устройство для его осуществления (варианты)

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны...
Тип: Изобретение
Номер охранного документа: 0002603684
Дата охранного документа: 27.11.2016
Показаны записи 1-4 из 4.
10.05.2014
№216.012.c098

Способ получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования и радиографический комплекс для его осуществления

Использование: для получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования. Сущность изобретения заключается в том, что при получении радиографического изображения быстропротекающих процессов в неоднородном объекте исследований выполняют...
Тип: Изобретение
Номер охранного документа: 0002515053
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c141

Устройство и способы:настройки магнитной системы формирования пучка протонов в объектной плоскости протонографического комплекса, согласования магнитной индукции магнитооптической системы формирования изображения и контроля настройки многокадровой системы регистрации протонных изображений

Изобретение относится к области регистрации изображений, сформированных с помощью пучка протонов, и может быть использовано при исследовании объектов с помощью радиографических методов. Устройство для настройки магнитооптической системы формирования пучка протонов состоит из импульсного...
Тип: Изобретение
Номер охранного документа: 0002515222
Дата охранного документа: 10.05.2014
20.04.2015
№216.013.42bf

Мобильный радиографический комплекс и источник излучения бетатронного типа для радиографического комплекса

Изобретение относится к области импульсной рентгеновской техники, в частности, к способам и устройствам для получения изображения быстропротекающих, в частности взрывных, процессов в оптически непрозрачных объектах исследования, и может быть использовано при радиографии динамических объектов...
Тип: Изобретение
Номер охранного документа: 0002548585
Дата охранного документа: 20.04.2015
09.06.2019
№219.017.7adc

Устройство проводки пучка заряженных частиц

Заявленное изобретение относится к ускорительной технике и сильноточной электронике. Устройство проводки может быть использовано при конструировании систем ввода пучка заряженных частиц в различные ускорители, работающие в режиме однократных импульсов. В заявленном устройстве фокусирующая...
Тип: Изобретение
Номер охранного документа: 0002356193
Дата охранного документа: 20.05.2009
+ добавить свой РИД