×
15.11.2019
219.017.e235

Результат интеллектуальной деятельности: Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники и нанотехнологии, в частности к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Си), которые могут быть использованы в производстве силовых разрывных электрических контактов, в переключателях мощных электрических сетей и вакуумных дугогасительных камерах. Нанокомпозитный электроконтактный материал на основе меди, состоящий из частично разупорядочной медной матрицы, в которой распределены кластеры двух тугоплавких компонентов размером менее 5 нм. Причем порошки меди и двух тугоплавких металлов (Me и Ме) имеют объемное соотношение 50%Cu-XMe-(50-X)Me, где X от 5 до 45%, при этом материал имеет пористость 1-3 % и твердость по Виккерсу 4,5-12 ГПа. Изобретение позволяет повысить физико-механические свойства материала, снизить пористость и удельное электросопротивление. 1 з.п. ф-лы.

Изобретение относится к области электротехники и нанотехнологии, в частности, к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Cu), которые могут быть использованы в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и вакуумных дугогасительных камерах.

При изготовлении указанных материалов необходимо получить сочетание высокой электропроводности, для чего в качестве основы используют Cu, и высокой износостойкости при воздействии электрической дуги, для чего необходимо вводить в состав композиционного материала тугоплавкие металлы с высокой температурой плавления и испарения, таких как вольфрам (W), хром (Cr) и молибден (Мо). Медь не смешивается и не взаимодействует с вольфрамом, хромом и молибденом, образуя при спекании псевдосплавы различного состава: Cu-Cr, Cu-W, Cu-Mo, Cu-Cr-W, Cu-Cr-Mo и Cu-Mo-W.

Известен материал и способ изготовления электрических контактов на основе Cr и Cu, включающий приготовление шихты механическим смешиванием порошков Cr и Cu, прессование и предварительное восстановление в атмосфере остроосушенного водорода с выдержкой при температуре 250-700°С, жидкофазное спекание при температуре 1100-1250°C в атмосфере остроосушенного водорода или твердофазное спекание при температуре не выше 1050°С в атмосфере водорода или в вакууме, дополнительный нагрев изделий до температуры 300-950°С в атмосфере водорода и осадку в закрытом штампе, при этом перед смешиванием порошков Cr и Cu проводят обкатку шарами частиц порошка хрома выполняют в течение 25-27 часов в медном барабане валковой мельницы в режиме «перекатывания» при соотношении массы шаров или обкатывающих тел и порошка 1:2 (RU 2369935, Н01Н 1/02, 10.10.2009).

Недостатком известного материала и способа его получения является длительность процесса измельчения порошка хрома (не менее 25 часов), низкие физико-механические свойства за счет крупного размера частиц хрома, средний диаметр которых после механической обработки составляет 53,2-57,9 мкм.

Известен материал и способ получения псевдосплава Cu-Cr с дисперсной структурой, включающий активацию путем смешивания исходных порошков Cu и Cr в качестве тугоплавкого металла в смесителе со смещенной осью вращения, прессование активированных порошков и их спекание в вакууме при температуре 1000-1100°С в течение 2 часов, при этом активацию исходных порошков шихты в смесителе осуществляют мелющими телами в виде металлических шариков диаметром 8-10 мм, при соотношении массы мелющих тел и исходных порошков 15:1, продолжительности смешивания шихты 3-3,5 часа и скорости вращения смесителя 60 об/мин (RU 2344189, С22С 1/04, B22F 3/12, С22С 9/00, 10.02.2008).

Изобретение позволяет получать компактный псевдосплав Cu-Cr с дисперсной структурой, с размерами частиц 40 мкм, твердостью по Бринеллю до 85 НВ, пределом прочности при растяжении до 290 МПа, с объемной усадкой при спекании при 1100°С, равной 8-10%.

Недостатком известного материала и способа является продолжительность процесса (общее время не менее 6 часов), низкие механические свойства конечного материала, крупный размер частиц.

Наиболее близким аналогом к заявляемому нанокомпозиционному электроконтактному материалу является композиционный материал Cu-Мо (20-30 масс. % Cu), который также имеет разупорядоченную медную матрицу, в которой распределены кластеры тугоплавких частиц размером более 30 нм. (RU2292988, B22F 3/12, С22С 1/04, 10.02.2007).

Недостатком известного композиционного материала является пористостью до 2%, размер частиц более 30 нм.

Недостаточно высокие свойства таких материалов, и их аналогов ограничивают использование материалов в производстве силовых разрывных и дугогасительных контактов в переключателях мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.

Техническим результатом предлагаемого изобретения в части материала является значительное повышение его физико-механических свойств, снижение пористости и удельного электросопротивления, при размере частиц не более 10 нм.

Технический результат достигается тем, что заявленный нанокомпозиционный электроконтактный материала состоит из частично разупорядоченной медной матрицы, в которой распределены кластеры двух тугоплавких частиц размером менее 10 нм, при этом содержание тугоплавкого компонента составляет 50 об. %.

Нанокомпозиционный электроконтактный материал состоит из трехкомпонентных систем Cu-Cr-W, Cu-Cr-Mo и Cu-Mo-W.

Порошки меди и двух тугоплавких металлов (Me1 и Ме2) имеют объемное соотношение 50%Cu-XMe1-(50-X)Me2, где X от 5 до 45%.

Получение такого материала включает высокоэнергетическую механическую обработку (ВЭМО) смеси исходных порошков меди и двух тугоплавких металлов в высокоэнергетической шаровой планетарной мельнице мелющими шарами в атмосфере аргона и последующее твердофазное спекание активированной смеси. ВЭМО проводят при соотношении массы шаров и исходных порошков 15:1-20:1, при скорости вращения шаровой мельницы 694-900 об/мин и продолжительности обработки 30-60 минут, а спекание активированной смеси порошков осуществляют методом искрового плазменного спекания (ИПС), для этого порошок помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток под нагрузкой 50-70 МПа. В качестве тугоплавких металлов используют хром, вольфрам, молибден. Время спекания при температуре 900-1000°С и продолжительности 10 минут. Нанокомпозиционный электроконтактный материал, представляет собой нанокомпозит, состоящий из кластеров на основе тугоплавких частиц размером менее 10 нм, распределенных в частично разупорядочной матрице, характеризующийся тем, что имеет плотность до 99%, твердость по Виккерсу 2,5-12 ГПа, электросопротивление 7-10 мкОм⋅см.

В качестве основных исходных компонентов для получения экспериментальных образцов нанокомпозитных материалов на основе псевдосплавов Cu-Cr-W, Cu-Cr-Mo и Cu-Mo-W для электрических контактов используются порошки металлов: Cu (порошок медный электролитический) марки ПМС-В (ГОСТ 4960-75); Cr (порошок хрома восстановленный) марки ПХ1М; Мо (молибденовый порошок) марки ПМ99,95 (ТУ 48-19-316-80); W (вольфрамовый порошок) марки ПВ2 (ТУ14-22-143-2000).

ВЭМО исходных порошков меди и тугоплавкого металла проводят в высокоэнергетической планетарной шаровой мельнице «Активатор-28» мелющими стальными шарами в течение 30-60 минут. За счет интенсивной механической обработки порошков в мельнице происходит их активация и измельчение до наноразмеров не более 10 нм.

После ВЭМО исходных порошков в мельнице «Активатор-28», полученные активированные нанокомпозитные смеси порошков Cu-Cr-W, Cu-Cr-Mo и Cu-Mo-W спекают на установке ИПС (Spark Plasma Sintering -Labox 650, SinterLand, Япония).

Сущность материала заключается в следующем.

Нанокомпозиционный электроконтактный материал состоит из меди и двух тугоплавких металлов (Me1 и Ме2), которые имеют объемное соотношение 50%Cu-XMe1(50-X)Me2, где X от 5 до 45%, размер тугоплавких кластеров составляет не более 10 нм.

Контроль качества образцов проводится на каждой технологическом этапе и осуществляется как визуальным осмотром, так и с использованием аппаратурных методик.

В комплексном исследовании микроструктуры и фазового состава были использованы методы порошковой рентгеновской дифракции (рентгеноструктурный анализ), растровой (сканирующей) электронной микроскопии, просвечивающей электронной микроскопии, дифракции электронов и другие. Для спеченных образцов Cu-Cr-W, Cu-Cr-Mo и Cu-Mo-W осуществляется также контроль прочностных характеристик, пористости, электросопротивления и микроструктуры.

Сущность материала подтверждается примерами

Пример 1.

Получение нанокомпозиционного электроконтактного материала Cu-Cr-W.

Порошки Cu, Cr и W смешивают при объемном соотношении 50% Cu, 45% Cr и 5% W. Приготовленную смесь подвергают ВЭМО (измельчению и перемешиванию) в планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 900 об/мин. Соотношение шаров к смеси порошка составляет 15:1. Использовались стальные шары 6-8 мм в диаметре. Время обработки 30 минут.

Полученный активированный композитный порошок подвергают ИПС, для этого порошок помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум, через спекаемый образец пропускают импульсный электрический ток под нагрузкой 50 МПа и спекают образец при температуре 1000°С в течение 10 мин. В результате получают образцы в форме дисков диаметром 15-60 мм и толщиной 4-10 мм.

Нанокомпозиционный электроконтактный материал имеет следующие характеристики: Пористость 1-3%, твердость по Виккерсу - 4,5-12 ГПа, удельное электросопротивление - 8 мкОм⋅см.

Твердость данного материала в 3.5 раза выше твердости всех исследуемых промышленных образцов. Значение удельного сопротивления возрастает примерно на 25-50% по сравнению со значением промышленных образцов, что позволяет использовать его для электроконтактных материалов.

Исследования на просвечивающем электронном микроскопе со сверхвысоким разрешением (увеличение до 2000000 раз) показали, что материал представляет собой нанокомпозит, состоящий из кластеров на основе хрома и вольфрама размером 4-5 нм, распределенных в частично разупорядоченной матрице на основе Cu.

Пример 2.

Получение нанокомпозиционного электроконтактного материала Cu-Cr-Mo

Порошки Cu, Cr и Мо смешивают при объемном соотношении 50% Cu, 25% Cr и 25% Мо. Приготовленную смесь подвергают ВЭМО (измельчению и перемешиванию) в планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 694 об/мин. Соотношение шаров к смеси порошка составляет 20:1. Время обработки 60 минут.

Полученные активированные композиционные порошки с различным содержанием Мо подвергают спеканию методом ИПС при 900°С в атмосфере аргона, через спекаемый образец пропускают импульсный электрический ток под нагрузкой 70 МПа в течение 10 мин.

Микроструктура образцов для Cu-Cr-Mo схожа с микроструктурой материала по примеру 1.

Нанокомпозиционный электроконтактный материал имеет следующие характеристики: пористость 1%, твердость по Виккерсу от 4 до 5 ГПа, удельное электросопротивление - 7 мкОм⋅см.

Пример 3.

Получение нанокомпозиционного электроконтактного материала Cu-Мо-W

Порошки Cu, Мо и W смешивают при объемном соотношении 50% Cu, 5% Мо и 45% W. Приготовленную смесь подвергают ВЭМО (измельчению и перемешиванию) в планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 694 об/мин. Соотношение шаров к смеси порошка составляет 15:1. Время обработки 60 минут.

Полученный активированный композиционный порошок подвергают ИПС в атмосфере аргона, через спекаемый образец пропускают импульсный электрический ток под нагрузкой 70 МПа и проводят спекание при температуре 1000°С в течение 10 мин. В результате получают образцы в форме дисков диаметром 15-60 мм и толщиной 4-10 мм.

Микроструктура образца схожа с микроструктурой материала по примеру 1.

Нанокомпозиционный электроконтактный материал Cu-Mo-W имеет следующие характеристики: пористость 1%; твердость по Виккерсу - 6-14 ГПа, удельное электросопротивление - 9,3 мкОм⋅см.

Нанокомпозиционный электроконтактный материал состоит из нанокластеров тугоплавких металлов, разделенных между собой каркасом медной фазы. Такая наноструктура предлагаемого материала обладает повышенными эксплуатационными свойствами по сравнению с материалами аналогов и промышленными материалами для контактов, например, ОАО "ПОЛЕМА" и компаний Китая и Германии.

Потенциальными потребителями такого материала, являются: электротехническая промышленность, где необходимы высокая электрическая проводимость, высокие механические, физические и эксплуатационные свойства, такие как прочность, твердость при комнатной и повышенной температурах, термическая стабильность, дугостойкость, для применения в производстве силовых разрывных и вакуумных дугогасительных контактов в переключателях (размыкателях) мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 322.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Показаны записи 11-13 из 13.
10.05.2018
№218.016.4d99

Способ получения полых наноструктурированных металлических микросфер

Изобретение относится к области порошковой металлургии, в частности к способам получения полых сферических порошков металлов, состоящих из нанокристаллических частиц. Полые наноструктурированные металлические микросферы имеют специфические механические, физические и химические свойства,...
Тип: Изобретение
Номер охранного документа: 0002652202
Дата охранного документа: 25.04.2018
15.02.2019
№219.016.bac8

Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - DyНfО), и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка гафната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002679822
Дата охранного документа: 13.02.2019
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
+ добавить свой РИД