×
15.11.2019
219.017.e214

Результат интеллектуальной деятельности: Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % KWO, 25 мол. % NaWO и 50 мол. % WO, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют медную фольгу. Высокотемпературный электрохимический способ позволяет формировать кристаллы оксидных вольфрамовых бронз из нановискеров, которые имеют отношение длины к диаметру > 1000. 6 н.п. ф-лы, 6 ил.

Изобретение относится к области высокотемпературной электрохимии, в частности к получению кристаллов оксидных вольфрамовых бронз (ОВБ), состоящих из вискеров нанометровой толщины, имеющих отношение длины к диаметру >1000 (нановискеров), которые могут быть использованы в медицине, наноэлектронике, а также в химической промышленности при изготовлении ион-селективных элементов для анализа микросред, электрохромных устройств, катализаторов химических реакций.

В настоящее время к наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зёрна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками.

Вискеры (от англ whisker – волос, шерсть; «усы», неорганические волокна) – это нитевидные кристаллы c диаметром от 1 до 10 мкм и отношением длины к диаметру >1000. С точки зрения, как фундаментальной науки, так и практики, вискеры являются одним из наиболее перспективных кристаллических материалов с уникальным комплексом свойств. Они, как правило, имеют совершенное, почти идеальное бездислокационное строение, что исключает обычные механизмы пластической деформации и приближает их прочность к теоретическому для данного вещества порогу. Вискеры в десятки и даже сотни раз прочнее обычных кристаллов, они обладают поразительной гибкостью, коррозионной стойкостью и кристаллографической анизотропией свойств. Подобная необычная форма кристаллов интересна не только с точки зрения исследования механизма ее образования, но и из-за своих специфических физико-химических характеристик, что делает весьма актуальными любые новые исследования в этой области. Представляя собой одномерную кристаллическую систему, вискеры могут найти широкий диапазон применений – от упрочняющих волокон до устройств наноэлектроники [1].

В работе [2] сказано: “Как ни странно, но до сих пор не существует воспроизводимых и относительно дешёвых способов получения вискеров химически сложного состава с желаемыми функциональными характеристиками. Для решения этой задачи, которая является одной из наиболее интересных в современном материаловедении, необходимо привлечение не только знаний, но и интуиции, всего имеющегося багажа экпериментальных наработок и даже фантазии”.

Известна высокая каталазная активность, проявленная нанокристаллическими ОВБ [3]. Оксидные вольфрамовые бронзы представляют собой нестехиометрические соединения с общей формулой MxWO3, где 0 < x < 1, M может быть 1-, 2-, 3-, 4-валентным элементом.

Для получения нанокристаллических оксидных вольфрамовых бронз используются различные способы. Например, в работе [4] нанокристаллы ОВБ получали выдержкой при 400°С в течение 2 часов тщательно помолотой порошковой смеси W–Cs(OH)2·H2O–H2WO4 в расплавленной эвтектической смеси LiCl–KCl. В результате было синтезировано соединение Cs0.32WO3 гексагональной структуры со средним размером частиц 291 нм. Длина и ширина этих кристаллов отличалась не более чем в 2 раза. В работе [5] наностержни тетрагональных вольфрамовых бронз щелочного металла были синтезированы стадийным восстановлением хлорида вольфрама (VI) натридом-(15-краун-5) калия (либо натридом-(18-краун-6) калия) в тетрагидрофуране. Толщина стержней составляла примерно 40 нм, а длина – 400 – 500 нм. То есть отношение длины к толщине составляло 10 – 12. В работе [6] нанонити тетрагональных калий-вольфрамовых бронз были синтезированы путем отжига при температуре 450°С, в течение 10 ч вольфрамовой фольги, предварительно обработанной ультразвуком в щелочном растворе. При этом получали нанопроволоки диаметром 50 – 200 нм и длиной 5 – 10 мкм, ориентированные случайным образом. Самая большая величина отношения длины к диаметру составляла 100, а среднее значение около 50. Преимущество электрохимического способа перед вышеперечисленными состоит в том, что он позволяет контролировать параметры процесса, сократить его продолжительность и, что особенно важно, управлять структурой и свойствами осадков.

Известен электрохимический способ получения игольчатых наноструктур оксидных вольфрамовых бронз [7]. В этом способе электролиз ведут в импульсном потенциостатическом режиме в расплаве, содержащем 30 мол.% К2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3 с использованием платинового анода и катода. При этом осаждение бронзы проводят на торце платиновой проволоки, вплавленной в тугоплавкое стекло. Осадок представляет собой игольчатое покрытие, где иглы были нанометровой толщины. Толщина игл составляет порядка 30 – 100 нм. Длина – около 10 мкм. Отношение длины к диаметру составляет 100 – 300. Таким образом, наноиглы, полученные данным способом, не относятся к кристаллам из нановискеров.

Известен также электрохимический способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз [8], включающий электролиз в импульсном потенциостатическом режиме при перенапряжении 170 – 300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, притом, что, процесс электроосаждения ведут на вольфрамовом катоде. Полученный этим способом материал представляет собой порошок бронзы гексагональной структуры, состоящий из микрокристаллов, где каждый микрокристалл – ориентированная наноигольчатая структура. Все иглы имеют одну ориентацию и вытянуты в направлении <0001>. Толщина игл составляет порядка 30 – 100 нм. Однако длина этих игл сравнительно небольшая и составляет около 4 мкм, т.е. отношение длины иголок к диаметру около 130, что не соответствует кристаллам из нановискеров.

Известным способом получения нановискерных структур оксидных вольфрамовых бронз на угольном материале [9], в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % K2WO4, 25 мол. % Li2WO4 и 45 мол. % WO3, с использованием платинового анода, получают осадки ОВБ на угольном материале, состоящие из вискеров, толщина которых лежит в интервале 30 – 150 нм, а длина достигает 5000 нм. Отношение длины вискеров к диаметру также имеет величину <1000.

Таким образом, в уровне техники не обнаружено сведений о способах получения кристаллов, состоящих из нановискеров, у которых отношение длины к диаметру >1000.

Технической задачей изобретения является разработка электрохимического способа формирования кристаллов ОВБ из нановискеров.

Поставленная задача решается шестью вариантами изобретений, включающих электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут в импульсном потенциостатическом режиме.

По первому варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют медную фольгу.

По второму варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –945 мВ и длительностью 0.5 с, при этом в качестве катода используют медную фольгу.

По третьему варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –895 мВ и длительностью 0.1 с, при этом в качестве катода используют медную фольгу.

По четвертому варианту электроосаждение ведут из расплава, содержащего 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –882 мВ и длительностью 0.2 с, при этом в качестве катода используют медную фольгу.

По пятому варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –895 мВ и длительностью 0.2 с, при этом в качестве катода используют никелевую фольгу.

По шестому варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют молибденовую фольгу.

Новый технический результат, достигаемый каждым из вариантов заявленного способа, заключается в получении кристаллов, состоящих из нановискеров, у которых отношение длины к диаметру >1000.

Изобретение иллюстрируется рисунками фиг. 1 – 6, на которых представлено СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, при этом изображения «а» и «б» каждой из фигур 1 – 6 иллюстрируют один и тот же кристалл ОВБ, при этом изображение «а» иллюстрирует общий вид осадка ОВБ на катоде, а совмещенное с ним изображение «б» – его увеличенный фрагмент.

На фиг. 1 представлено СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, Изобретение иллюстрируется рисунками, где на фиг. 1 представлено СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –855 мВ, 1 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС; на фиг. 2 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –945 мВ, 0.5 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС; на фиг. 3 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –895 мВ, 0.1 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 750ºС; на фиг. 4 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –882 мВ, 0.2 с, 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, Т = 700ºС; на фиг. 5 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –895 мВ, 0.2 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС; на фиг. 6 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –855 мВ, 1 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС.

Экспериментальную проверку способа осуществляли следующим образом. Электролиз проводили в трехэлектродной ячейке с использованием импульсного потенциостатического режима. Анодом служила платиновая проволока, электродом сравнения – платиновая фольга площадью 1 см2, полупогруженная в расплав, а катодом – медная или никелевая или молибденовая фольга площадью 1.2 см2. Контейнером являлся платиновый тигель. Температуру процесса поддерживали постоянной: 700 или 750°C. Для проведения эксперимента электрохимическую ячейку помещали в шахтную печь, температуру в которой поддерживали с помощью терморегулятора «Варта ТП 703». Вблизи электродов (в электролите) температуру измеряли с помощью платина-платинородиевой термопары. Электроосаждение проводили с помощью потенциостата-гальваностата Autolab PGSTAT302N (Metrohm, Netherlands) с программным обеспечением Nova 1.9.

По окончании опыта катодный осадок отмывали в щелочном растворе (10–15 мас.% KOH) комнатной температуры в течение 12 ч, затем промывали дистиллированной водой и спиртом. Морфологию осадков изучали с помощью электронного микроскопа JSM-5900 LV (Jeol, Japan). Для определения фазового состава катодных продуктов проводили рентгеноструктурный анализ образцов на установке RIGAKU D/MAX-2200VL.

Пример 1. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с. При этом на электроде образуется осадок ОВБ (фиг. 1). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.475WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 2. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –945 мВ и длительностью 0.5 с. При этом на электроде образуется осадок ОВБ (фиг. 2). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.475WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 3. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 750°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –895 мВ и длительностью 0.1 с. При этом на электроде образуется осадок ОВБ (фиг. 3). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.475WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 4. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –882 мВ и длительностью 0.2 с. При этом на электроде образуется осадок ОВБ (фиг. 4). Диаметр нановискеров составляет около 20 нм, а длина кристаллов, состоящих из этих нановискеров, более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 5. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на никелевом катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –895 мВ и длительностью 0.2 с. При этом на электроде образуется осадок ОВБ (фиг. 5). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.39Na0.27WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 6. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25мол.% Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на молибденовом катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с. При этом на электроде образуется осадок кристаллов ОВБ (фиг. 6). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.39Na0.27WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Полученные данные подтверждают, что заявленным высокотемпературным электрохимическим способом можно формировать кристаллы ОВБ из нановискеров.

Источники информации:

1. Померанцева Е.А., Гудилин Е.А., Кривецкий В.В. Неорганические волокна. «Немного о химии усов» http://www.chem.msu.su/rus/teaching/goodilin1/whiskers.pdf.

2. Богатство наномира. Фоторепртаж из глубин вещества/под редакцией Ю.Д.Третьякова.-М.:Бином. Лаборатория знаний. 2010. -171с.

3. Вакарин С.В., Меляева А.А., Семерикова О.Л., Кондратюк В.С., Панкратов А.А., Плаксин С.В., Поротникова Н.М., Зайков Ю.П., Петров Л.А., Микушина Ю.В., Шишмаков А.Б., Чупахин О.Н. Каталазная активность крупнозернистых и наноразмерных оксидных вольфрамовых бронз, полученных электролизом расплавленных солей // Известия АН. Сер. хим., 2011. № 10. С. 1951–1954.

4. Li C., Kang L., Zhu Y., Wang Q., Zhao X., He H., Tian D., Liu J., Low-temperature Atmosphere-free Molten Salt Synthesis of NIR-shielding CsxWO3. Nano Adv., 2017, 2, 47−52.

5. Zivkovic О., Yan С. Wagner M. J. Tetragonal alkali metal tungsten bronze and hexagonal tungstate nanorods synthesized by alkalide reduction. Journal of Materials Chemistry, 2009, 19, 6029–6033.

6. Zheng Z., Yan B., Zhang J., You Y., Lim C. T., Shen Z., Yu T. Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films. Adv. Mater., 2008, 20, 352–356.

7. RU2354753, публ. 10.05.2009.

8. RU 2456079 публ. 20.07.2012.

9. RU 2525543, публ. 20.08.2014.


Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)
Источник поступления информации: Роспатент

Показаны записи 41-50 из 94.
10.05.2016
№216.015.3b48

Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит...
Тип: Изобретение
Номер охранного документа: 0002583838
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c7e

Способ измерения влажности воздуха

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и...
Тип: Изобретение
Номер охранного документа: 0002583164
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.46b6

Химический способ получения искусственных алмазов

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном...
Тип: Изобретение
Номер охранного документа: 0002586140
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
Показаны записи 41-50 из 58.
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
01.12.2019
№219.017.e966

Способ переработки тепловыделяющих элементов

Изобретение относится к ядерной энергетике. Способ переработки тепловыделяющих элементов с нитридным отработавшим ядерным топливом включает растворение их фрагментов до получения электролитного раствора, содержащего соединения актинидов, пригодного для их выделения. Растворение тепловыделяющих...
Тип: Изобретение
Номер охранного документа: 0002707562
Дата охранного документа: 28.11.2019
18.12.2019
№219.017.ee33

Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов

Группа изобретений предназначена для определения фильтрующих свойств пористых керамических фильтров в форме цилиндров с боковой фильтрующей поверхностью по расплавленной смеси галогенидов щелочных металлов, например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных...
Тип: Изобретение
Номер охранного документа: 0002709092
Дата охранного документа: 13.12.2019
16.01.2020
№220.017.f560

Электролитический способ получения рениевых пленок

Изобретение относится к области гальванотехники и может быть использовано для изготовления тонких пленок рения, которые могут быть использованы в качестве подслоя для последующего электроосаждения. Электролиз ведут в растворе соляной кислоты с концентрацией 200-350 г/л, содержащем соединения...
Тип: Изобретение
Номер охранного документа: 0002710807
Дата охранного документа: 14.01.2020
18.03.2020
№220.018.0ca0

Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов

Заявлена группа изобретений, предназначенная для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата), пористых металлических материалов (фильтров) по расплавленной смеси галогенидов щелочных...
Тип: Изобретение
Номер охранного документа: 0002716793
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0ccc

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки,...
Тип: Изобретение
Номер охранного документа: 0002716726
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава...
Тип: Изобретение
Номер охранного документа: 0002716727
Дата охранного документа: 16.03.2020
04.06.2020
№220.018.2405

Сенсор для измерения кислородосодержания расплава licl-lio-li и атмосферы над расплавом

Изобретение относится к аналитической технике и может быть использовано в технологиях переработки оксидного ядерного топлива преимущественно в замкнутом ядерном топливном цикле. Сенсор содержит пробирку из твердого электролита, эталонный электрод, токосъемник с эталонного электрода, токосъемник...
Тип: Изобретение
Номер охранного документа: 0002722613
Дата охранного документа: 02.06.2020
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
+ добавить свой РИД