×
18.03.2020
220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава отделяют от твердого катода и смешивают с жидким алюминием при температуре от 800 до 900 °С. Обеспечивается исключение сложных и длительных операций, включающих извлечение лигатуры со дна электролизера и погружение чистого алюминия, сокращение времени простаивания электролизера и повышение эффективности получения лигатур алюминия. 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к цветной металлургии, в частности, к электролитическому получению лигатур алюминия из наиболее дешевого оксидного сырья, которые могут быть использованы для производства широкого спектра сплавов и композиционных материалов на основе алюминия.

Лигатуры алюминия используют для производства широкого спектра легких сплавов и композиционных материалов с уникальным сочетанием физико-механических свойств и эксплуатационных характеристик. С развитием авиастроения, ракетостроения, автомобилестроения, судостроения и прочих отраслей спрос на лигатуры алюминия постоянно растет.

Стандартизированные лигатуры алюминия получают смешением и прессованием порошков алюминия и легирующего элемента в брикеты в инертной атмосфере с последующим сплавлением брикетов с алюминием, а также алюминотермическим восстановлением соединений легирующего элемента, преимущественно солей, под слоем солевого флюса при температуре выше 750 °С. Это производство характеризуется использованием дорогих реагентов, высокими ресурсо- и энергозатратами, большими объемами отходов, потерями ценных компонентов, невозможностью организации непрерывного энергоэффективного производства лигатуры и, как следствие, высокой стоимостью производимых лигатур.

Из уровня техники известны электролитические способы получения лигатур алюминия, включающие электролиз галогенидного расплава с использованием твердого катода при температуре от 300 °С и выше, преимущественно до 650 °С [1, 2]. При их осуществлении в качестве источников алюминия и легирующего элемента используют соответствующие галогенидные соли, которые являются дорогими, летучими и гигроскопичными. По этим причинам способы могут осуществляться в реакторах с инертной атмосферой, что делает их дорогими, трудозатратными, малоэффективными и неперспективными для серийного производства.

Для исключения операций в инертной атмосфере и соответственно упрощения конструкции реакторов, а также снижения производственных затрат предложен способ получения лигатур алюминия с использованием наиболее дешевого оксидного сырья, включающий электролиз оксидно-фторидного расплава с жидкометаллическим алюминиевым катодом при температуре выше 750 °С [3]. Получаемые данным способом отливки лигатур переплавляют в миксере при 900 °С для усреднения и корректировки их элементного состава и разливают в товарные формы. Недостатком способа является необходимость разовой или периодической выгрузки лигатуры из электролизера и загрузки в него чистого алюминия, которые подразумевают разработку устройства выгрузки лигатуры из электролизера, дополнительные сложные операции и простаивание (холостой ход работы) электролизера при его постоянном подогреве. По использованию оксидного сырья данный способ можно принять за прототип.

Задачей изобретения является упрощение технологии получения лигатур алюминия из оксидного сырья.

Поставленная задача решается тем, что электролитический способ получения лигатур алюминия из оксидного сырья, как и известные способы, включает электролиз оксидно-фторидного расплава, при этом электролиз расплава ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава отделяют от твердого катода и смешивают с жидким алюминием при температуре от 800 до 900 °С.

Сущность электролиза оксидно-фторидного расплава с использованием твердого катода при заявленных условиях заключается в том, что при электролизе оксидно-фторидного расплава, содержащего оксиды алюминия (Al2O3) и легирующего элемента (MeOx), происходит электролитическое разложение оксидов с выделением кислородсодержащих газов на аноде (CO, CO2, O2) и алюминия с легирующим элементом на твердом катоде, например по реакциям:

2Al2O3 + 3С = 4Al + 3CO2 (1)

2MeOx + xС = 2Me + xCO2 (2)

Соотношение компонентов в катодных продуктах электролиза определяется составом оксидно-фторидного расплава, содержанием оксидов в расплаве, природой (электрическим потенциалом) легирующего элемента, материалом катода, катодной плотностью тока и температурой.

По окончании электролиза твердый катод извлекают из расплава, а катодные продукты электролиза с компонентами оксидно-фторидного расплава отделяют от катода и смешивают с жидким алюминием. Особенностью использования твердого катода при электролизе оксидно-фторидных расплавов является то, что в широком диапазоне условий в катодных продуктах помимо восстанавливаемых элементов присутствуют компоненты расплава, нерастворимые в водных растворах. Задача их отделения от целевых продуктов решается тем, что при сплавлении с алюминием катодные продукты электролиза растворяются в алюминии, формируя лигатуру алюминия, а компоненты оксидно-фторидного расплава всплывают на поверхность лигатуры и дополнительно служат покровно-рафинирующим флюсом.

Заявленный способ преимущественно предназначен для осуществления электролиза при температуре от 570 до 750 °С, что подразумевает некоторое понижение катодных плотностей тока и, соответственно, производительности. Однако наряду с этим снижение температуры позволяет исключить длительные операции по извлечению лигатуры со дна электролизера и погружения в него чистого алюминия, снизить потери тепла в окружающую среду, снизить коррозию конструкционных и электродных материалов, расширить диапазон подходящих расплавов и электродных материалов, исключить потери легирующего элемента в твердых оксидно-солевых образованиях в электролизере, максимально и контролируемо извлекать легирующий элемент на катоде, снизить обратную растворимость алюминия и легирующего элемента в расплаве, повысить катодный выход по току и эффективность, снизить объемы солевых возгонов, содержащих легирующий элемент, снизить объем вредных и отравляющих газов в случае использования углеродного анода.

Минимальная температура электролиза оксидно-фторидного расплава (570 °С) определена температурой ликвидуса расплава, подходящего для электровыделения из него алюминия и легирующего элемента. Нижний предел температуры сплавления катодных продуктов электролиза с алюминием (700 °С) определен температурой плавления алюминия, а верхний (900 °С) – физическим состоянием жидкой лигатуры, достаточным для ее розлива в товарные слитки.

Аналогично прототипу способ может быть осуществлен периодически и непрерывно. Непрерывность обеспечивается тем, что в оксидно-фторидный расплав периодически подгружают оксиды алюминия и легирующего элемента, а твердый катод обновляют путем его замены или удаления с него катодных продуктов электролиза. Необходимое содержание легирующего элемента в лигатуре достигается за счет наработки катодного продукта, предназначенного для сплавления с алюминием.

Основной технический результат, достигаемый заявленным способом, заключается в исключении сложных и длительных операций, включающих извлечение лигатуры со дна электролизера и погружение чистого алюминия, что приводит к сокращению времени простаивания электролизера и повышению эффективности получения лигатур алюминия.

Изобретение иллюстрируется таблицей, в которой представлены параметры и результаты экспериментальной апробации заявленного способа.

Экспериментальную апробацию способа осуществляли с использованием лабораторного электролизера, представленного в виде корундового контейнера вместимостью 500 г оксидно-фторидного расплава. Предварительно приготовленную смесь фторидов KF-AlF3 с оксидом Al2O3 погружали в корундовый контейнер, который размещали в печи сопротивления и нагревали до температуры электролиза (800 °С). После плавления смеси в расплав погружали графитовый анод и вольфрамовый катод, выполненные в виде параллельно расположенных пластин на расстоянии 4 см. Подвод тока к электродам осуществляли при помощи металлических стержней, экранированных корундовыми трубками. Для интенсификации катодного процесса вольфрамовый катод предварительно был смочен алюминием.

После этого вели электролиз оксидно-фторидного расплава KF-AlF3-Al2O3 при токовой нагрузке 20 А, непрерывно контролируя напряжение между электродами и температуру расплава. На аноде наблюдали выделение газовых пузырей. Спустя 30 мин после начала электролиза в расплав начали периодически подгружать Sc2O3. Спустя 6 часов электролиза ток отключили, катод подняли над расплавом, и катодные продукты электролиза соскребли с катода. Согласно рентгенофазовому анализу, катодные продукты содержали фазы Al, Al3Sc, KAlF4 и K3AlF6.

Сплавление катодных продуктов с алюминием массой 200 г вели при 800 °С в течение 30 мин. Для интенсификации процесса растворения Al3Sc алюминий механически перемешивали. По окончании полученную лигатуру вместе с компонентами оксидно-фторидного расплава слили в графитовую изложницу. Элементный и фазовый состав полученной лигатуры, легко отделяемой от солевой смеси, определяли при помощи рентгенофазового анализа, спектрального анализа и сканирующей электронной микроскопии. По данным анализов в лигатуре содержалось 2.05 мас. % скандия, представленного в виде элементарного скандия и фаз интерметаллидного соединения Al3Sc, равномерно распределенных по матрице алюминия. Содержание примесей в полученной лигатуре не превышало допустимые пределы по ГОСТ 53777-2010 [4]. По привесу алюминия и скандия оценили катодные выхода по току для алюминия и скандия, которые составили 68.4 и 12.8 %, соответственно. Величина суммарного катодного выхода по току (81.2 %) превышает средние величины, полученные для подобных электролизных испытаний в лабораторных реакторах при использовании жидкометаллического алюминиевого катода.

По аналогичной схеме были получены лигатуры со скандием, цирконием, бором и титаном в расплавах, содержащих KF, NaF, AlF3 и Al2O3 в диапазоне температур электролиза от 570 до 750 °С с периодическими добавками соответствующих оксидов (Sc2O3, ZrO2, B2O3, TiO2 и Al2O3). Параметры и результаты лабораторных испытаний приведены в таблице, из данных которой видно, что во всех случаях достигнуто высокое содержание легирующего элемента в лигатурах, при этом оно может варьироваться как путем подбора параметров электролиза, так и массой алюминия, сплавляемого с катодными продуктами.

Для получения лигатур алюминия с двумя легирующими элементами в расплав периодически подгружали оксиды двух легирующих элементов. Помимо указанных в таблице примеров заявленный способ позволяет получать лигатуры алюминиевые, составы которых не ограничены списком стандартизированных лигатур по ГОСТ 53777-2010.

В целом заявленный способ позволяет понизить температуру электролиза и потери легирующего элемента, снизить расход тепла, затрачиваемого на подогрев окружающей среды, исключить операцию выгрузки лигатуры из электролизера и расширить диапазон используемых расплавов и сортамент лигатур алюминиевых.

Источники информации:

1. Journal of Solid State Electrochemistry, 2015, Vol. 19, P. 3485-3489.

2. Electrochimica Acta, 2014, Vol. 118, P. 58-66.

3. RU 2658556 C1, публ. 21.06.2018.

4. ГОСТ 53777-2010. Лигатуры алюминиевые. Технические условия.


Электролитический способ получения лигатур алюминия из оксидного сырья
Источник поступления информации: Роспатент

Показаны записи 1-10 из 94.
10.04.2013
№216.012.338a

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом...
Тип: Изобретение
Номер охранного документа: 0002478737
Дата охранного документа: 10.04.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5e1a

Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах

Изобретение относится к аналитической технике, в частности к датчикам, предназначенным для анализа газовых сред и металлических расплавов на кислородосодержание. Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах содержит выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002489711
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.619f

Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях содержит мембрану из протонпроводящего твердого электролита, эталонный и измерительный электроды,...
Тип: Изобретение
Номер охранного документа: 0002490623
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6a7f

Молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей

Изобретение относится к химической, нефтехимической, газовой отраслям. Газоплотную керамику со структурой майенита предложено использовать в качестве молекулярного фильтра для селективного извлечения гелия из гелийсодержащих газовых смесей. Технический результат: селективное и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002492914
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.75f2

Твердый электролит на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах. Твердый электролит на основе оксида церия и церата бария, допированный самарием, имеет состав, отвечающий...
Тип: Изобретение
Номер охранного документа: 0002495854
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8875

Электрохимический способ получения графена

Изобретение может быть использовано в электрохимических и электрофизических устройствах. Осуществляют анодную гальваностатическую поляризацию титана или циркония с плотностью тока от 0,1 до 3,0 мА·см в расплаве хлоридов щелочных металлов, содержащем от 0,1 до 1,0 мас.% порошка карбида бора при...
Тип: Изобретение
Номер охранного документа: 0002500615
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e5a

Способ получения газоплотной керамики на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава...
Тип: Изобретение
Номер охранного документа: 0002506246
Дата охранного документа: 10.02.2014
Показаны записи 1-10 из 59.
10.02.2013
№216.012.24d3

Электрохимический генератор на твердооксидных топливных элементах

Изобретение относится к устройствам для прямого преобразования химической энергии топлива в электрическую с использованием твердооксидных топливных элементов (ТОТЭ). Электрохимический генератор на твердооксидных топливных элементах содержит корпус, камеру смешения метана и воздуха, камеру...
Тип: Изобретение
Номер охранного документа: 0002474929
Дата охранного документа: 10.02.2013
27.06.2013
№216.012.50d9

Способ получения нано- и микроструктурных порошков и/или волокон кристаллического и/или рентгеноаморфного кремния

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кристаллического и/или рентгеноаморфного кремния в виде нано- и микроструктурных порошков и/или волокон. Способ включает электролитическое растворение по меньшей мере одного выполненного из...
Тип: Изобретение
Номер охранного документа: 0002486290
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.545c

Способ электролитического получения свинца

Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом. Способ включает электролитическое рафинирование свинца в расплаве галогенидов солей с использованием жидкометаллических катода и анода. При этом процесс электролиза ведут с применением одного...
Тип: Изобретение
Номер охранного документа: 0002487199
Дата охранного документа: 10.07.2013
27.08.2013
№216.012.6489

Электрохимический способ получения сплошных слоев кремния

Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при...
Тип: Изобретение
Номер охранного документа: 0002491374
Дата охранного документа: 27.08.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
27.05.2014
№216.012.c87c

Электрохимический способ получения металлов и/или сплавов из малорастворимых и нерастворимых соединений

Изобретение относится к электрохимическому способу получения металлов, за исключением щелочных и щелочно-земельных, и/или сплавов металлов. Способ включает восстановление металлов и/или сплавов в кальцийсодержащем оксидно-галогенидном расплаве из соединений получаемых металлов и/или из смесей...
Тип: Изобретение
Номер охранного документа: 0002517090
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.df2e

Электролизер для тонкослойного электролитического рафинирования металлического свинца

Изобретение относится к тонкослойному рафинированию легкоплавких цветных металлов, в частности сортового свинца. Электролизер для тонкослойного электролитического рафинирования металлического свинца содержит вертикально помещенную в корпус электролизера пористую керамическую диафрагму,...
Тип: Изобретение
Номер охранного документа: 0002522920
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1a4

Композитный электродный материал для электрохимических устройств

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных...
Тип: Изобретение
Номер охранного документа: 0002523550
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e957

Способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % KWO, 25 мол. % LiWO и 45 мол. % WO, с использованием...
Тип: Изобретение
Номер охранного документа: 0002525543
Дата охранного документа: 20.08.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
+ добавить свой РИД