×
15.11.2019
219.017.e1e9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АММИАКА

Вид РИД

Изобретение

№ охранного документа
0002706059
Дата охранного документа
13.11.2019
Аннотация: Изобретение относится к способу получения аммиака каталитической реакцией подпиточного синтез-газа, получаемого риформингом углеводородного сырья, и к установке для его осуществления. Способ включает: первичный риформинг углеводородного сырья с водяным паром, с получением первого риформинг-газа, вторичный риформинг первого риформинг-газа с огневым подогревом воздуха, с получением сырого синтез-газа, очистку сырого синтез-газа, с получением подпиточного синтез-газа, конверсию подпиточного синтез-газа в аммиак в контуре синтеза. При этом первичный риформинг проводят при температуре, равной по меньшей мере 790°С, и давлении, равном по меньшей мере 50 бар, а вторичный риформинг проводят в основном без избытка воздуха, по сравнению с его стехиометрическим количеством. Подпиточный синтез-газ имеет молярное отношение Н к N, равное 2,5 или более, но менее 3. Затем осуществляют отбор из контура синтеза продувочного потока, отделение от него потока, содержащего водород, и добавление этого содержащего водород потока к упомянутому подпиточному газу для регулирования отношения Н к N. Технический результат заключается в получении более высокой производительности без превышения предельных режимов паровой турбины. 2 н. и 11 з.п. ф-лы, 1 ил.

Область техники

Настоящее изобретение относится к способу получения аммиака каталитической реакцией подпиточного синтез-газа, получаемого риформингом углеводородного сырья.

Уровень техники

В промышленном производстве аммиака используется каталитическая реакция синтез-газа (ʺподпиточного газаʺ), содержащего водород и азот, внутри контура синтеза высокого давления (ВД), работающего обычно при давлениях примерно 80-300 бар.

Подпиточный газ получают в головной секции, перед контуром синтеза высокого давления, риформингом углеводородного сырья.

Синтез аммиака из углеводородного сырья в основном включает: первичный риформинг с водяным паром; вторичный риформинг с окислителем с получением сырого (исходного) синтез-газа; очистку этого сырого синтез-газа с получением подпиточного синтез-газа; конверсию подпиточного синтез-газа в аммиак в контуре синтеза высокого давления.

Очистка может включать конверсию сдвига моноокиси углерода в двуокись углерода, удаление двуокиси углерода и, опционально, метанизацию. Очищенный синтез-газ сжимается в многоступенчатом компрессоре для подачи далее в контур синтеза. Этот компрессор газа обычно приводится в действие непосредственно от паровой турбины.

Шаг первичного риформинга проводится в пучке нагреваемых снаружи трубок, заполненных катализатором (каталитических трубок).

Для снижения максимальной рабочей температуры этих каталитических трубок, в существующих установках проводят вторичный риформинг с кислородом или обогащенным воздухом. Однако для получения кислорода или обогащенного воздуха требуются воздухоразделительная установка и затраты энергии, что увеличивает расходы.

Другой известный способ поддержания относительно низкой температуры трубок, без необходимости использования кислорода или обогащенного воздуха, состоит в проведении вторичного риформинга с огневым подогревом воздуха при значительном избытке воздуха относительно его количества по теоретическому стехиометрическому соотношению. Теоретическим стехиометрическим количеством воздуха является его количество, необходимое для получения молярного отношения Н2 к N2, равного 3 в очищенном подпиточном газе, направляемом в процесс синтеза аммиака.

Недостатком этого способа является, однако, внесение большого количества азота в головную секцию. Это вызывает большой расход воздуха, требующий более мощного и дорогого оборудования для перекачки. Кроме того, главный компрессор синтез-газа и его приводная турбина могут стать узким местом установки, оказавшись перед необходимостью перекачивания очень большого объема, например, более 3000 тонн в день.

При такой большой нагрузке, от компрессора газа потребовался бы соответствующий расход и обладание большой степенью сжатия. Для обеспечения большого расхода пара в турбине, требующегося для приведения в действие компрессора, потребовалось бы использование ротора большого диаметра, неспособного достичь высоких скоростей вращения (например, 10000 об/мин), необходимых для компрессора, в основном из-за ограничений, связанных со слишком высокой окружной скоростью конца лопастей ступеней низкого давления турбины. В результате, максимальная производительность установки синтеза аммиака, выраженная в количестве аммиака, который может быть синтезирован, в основном ограничена производительностью узла ʺкомпрессор/турбинаʺ сжатия синтез-газа.

Способы, используемые в уровне техники, не обеспечивают удовлетворительного решения этой проблемы. Например, введение редуктора между компрессором и турбиной нежелательно из-за невысокой надежности и потери КПД. Другие попытки решения этой проблемы включают: введение промежуточного реактора для получения некоторого количеств аммиака, при этом, однако, увеличиваются сложность установки и расходы; использование более низкого давления синтеза, что негативно отражается на процессе синтеза.

Также используется отведение продувочного потока из контура синтеза высокого давления для удаления инертных газов, которые, в противном случае, могут накапливаться и снижать общую эффективность. В ЕР 2316792 раскрывается выделение водорода из этого продувочного потока и использование выделенного водорода для компенсации избытка азота. Однако, благодаря большому количеству воздуха, вводимого при вторичном риформинге, требуемое количество водорода оказывается большим, что подразумевает использование дорогой технологии разделения, например, криогенной, TSA (адсорбция/десорбция при различных температурах, от англ. Temperature Swing Adsobtion) или PSA (адсорбция/десорбция при различных давлениях, от англ. Pressure Swing Adsorbtion).

Раскрытие изобретения

Задачей настоящего изобретения является преодоление описанных недостатков и ограничений уровня техники.

Эта задача решается процессом синтеза аммиака из углеводородного сырья, включающим:

первичный риформинг углеводородного сырья с водяным паром, с получением первого риформинг-газа;

вторичный риформинг первого риформинг-газа с огневым подогревом воздуха, с получением сырого синтез-газа;

очистку сырого синтез-газа с получением подпиточного синтез-газа;

конверсию подпиточного синтез-газа в аммиак в контуре синтеза,

отличающимся тем, что первичный риформинг проводят при температуре по меньшей мере 790°С и давлении по меньшей мере 50 бар; вторичный риформинг проводят в основном без избытка воздуха, по сравнению с его стехиометрическим количеством, а подпиточный синтез-газ характеризуется молярным отношением Н2 к N2 в интервале от 2,5 до 3.

Указанные величины температуры и давления относятся к технологическому газу на выходе каталитических трубок первичного риформинга.

Предпочтительно, упомянутая выше температура по меньшей мере 790°С превышает 800°С.

Предпочтительно, указанное молярное отношение Н2 к N2 находится в интервале от 2,6 до 2,8.

Как было упомянуто выше, под стехиометрическим количеством воздуха понимается количество, необходимое для получения в подпиточном газе, подаваемом в контур синтеза, молярного отношения, равного 3, т.е., оно в основном зависит от количества водорода Н2 в подпиточном газе. Отсутствие, в основном, избытка воздуха следует понимать, как количество воздуха, обеспечивающее молярное отношение Н2 к N2, составляющее 2,5 или более.

Предпочтительно, конверсия подпиточного синтез-газа в аммиак проводится при давлении контура, превышающем в 2-3,5 раза давление технологического газа на выходе каталитических трубок первичного риформинга. Под давлением контура понимается давление нагнетания циркуляционного насоса контура. Более предпочтительно, давление контура находится в пределах 100-200 бар, еще более предпочтительно, от 120 до 150 бар.

Особенностью изобретения является увеличение температуры первичного риформинга и давления без использования избытка воздуха по сравнению с его стехиометрическим количеством. Воздух для вторичного риформинга подается в стехиометрическом количестве или с небольшим избытком, в результате чего молярное отношение Н2 к N2 равно или несколько больше 3. Для процесса не требуется избытка воздуха, либо обогащения воздуха кислородом.

В особенно предпочтительном варианте выполнения, каталитические трубки в первичном риформере выполнены из сплава, выбранного из следующих материалов:

GX45NiCrSiNbTi3525, GX40NiCrSiNb3525 (согласно классификации европейского стандарта EN 10027);

сплавы коррозионностойкие (типа HP), коррозионностойкие модифицированные (типа HP mod), коррозионностойкий модифицированный с микролегированием (типа HP mod Microalloy), коррозионностойкий с микролегированием с Nb (типа HP Nb Microalloy), коррозионностойкий с микролегированием (типа HP Microalloy), жаропрочный с микролегированием (типа НК), (по классификации стандартов Американского общества специалистов по испытаниям материалов ASTM А-608 и ASTM А-297).

Указанные материалы пригодны для работы при повышенных давлениях и температурах в соответствии с изобретением.

В некоторых вариантах выполнения, процесс, предложенный в изобретении, включает отведение из контура продувочного потока, отделения от него потока, содержащего водород, и добавление этого содержащего водород потока к подпиточному газу для регулирования соотношения между Н2 и N2. Когда молярное отношение Н2 к N2 в получаемом синтез-газе менее 3, этот содержащий водород поток используется для приближения этого отношения к величине, равной или близкой 3.

Преимуществом изобретения является то, что для корректировки отношения Н2 к N2 требуется меньше водорода благодаря близости соотношения между Н2 и N2 к 3, поэтому могут использоваться менее затратные способы отделения водорода, например, посредством мембранного узла регенерации водорода. Заявитель обнаружил, что, даже если производительность извлечения Н2 и N2 мембранным узлом регенерации ниже, чем криогенным методом, из-за высокого давления просачивания, рабочие характеристики этого метода являются приемлемыми.

Контур синтеза включает циркуляционный компрессор (также называемый циркулятором). В соответствии с вариантом выполнения изобретения, с выхода главного газового компрессора газ подается на всасывающую сторону циркуляционного компрессора контура. Благодаря этому, нагрузка на главный компрессор снижается, так как часть сжатия обеспечивается циркулятором.

В другом предпочтительном варианте выполнения, перед сжатием в главном компрессоре или между двумя ступенями сжатия, синтез-газ подвергается осушению посредством аммиачной промывки.

Главным достоинством изобретения является снижение нагрузки на главный компрессор синтез-газа. Соответственно, сокращается и потребляемая компрессором мощность, при данной производительности. Таким образом, изобретение позволяет получить более высокую производительность, например, более 3000 тонн, без превышения упомянутых выше предельных режимов паровой турбины, соединенной с компрессором синтез-газа, т.е., сохранить непосредственное приводное соединение между компрессором и турбиной. Например, изобретение позволяет достичь производительности в 4000 тонн.

В некоторых вариантах выполнения изобретения, основным потребителем мощности становится воздушный компрессор (вместо компрессора синтез газа). Соответственно, для вращения паровой турбины, соединенной с этим воздушным компрессором, используют пар с максимальным имеющимся давлением; отходящий или извлеченный из этой турбины пар, предпочтительно, используется для первичного риформинга.

Это дает преимущество с точки зрения эффективности процесса, поскольку сжатие воздуха можно осуществлять более эффективно, чем сжатие синтез-газа. Такая возможность связана с использованием компрессора со встроенным редуктором, что не подходит для работы с синтез-газом.

Более того, скорость вращения воздушного компрессора (число оборотов в минуту) ниже, чем у компрессора синтез-газа, поэтому не важны ограничения на размер паровой турбины, соединенной с воздушным компрессором.

В другом варианте выполнения изобретения предлагается потребление упомянутой паровой турбиной большего количества пара, чем требуется для компрессора технологического воздуха. Соответственно, присоединенная к воздушному компрессору турбина может также приводить в действие электрогенератор.

Согласно предпочтительному варианту выполнения, процесс риформинга, включающий первичный риформинг и вторичный риформинг с огневым подогревом воздуха, проводят с общим отношением пар/углерод, равным или превышающим 2,9. Это общее отношение пар/углерод означает общее соотношение водяного пара и углерода, подаваемых в процесс риформинга.

Такое относительно высокое соотношение между водяным паром и углеродом благоприятно влияет на конверсию сырья и последующую реакцию сдвига моноокиси углерода. Здесь также имеет место синергическое взаимодействие с повышенным давлением при первичном риформинге, равным по меньшей мере 50 бар. По сравнению с обычным риформингом, увеличенное количество пара (благодаря более высокому отношению пар/углерод) предполагает, что больше тепла может быть извлечено из риформинга при высокой температуре, и может быть доступно для дальнейшего использования внутри головной секции, например, для регенерации раствора, применяемого для абсорбции СО2. В результате повышается энергетическая эффективность головной секции, например, за счет снижения необходимости подвода тепла.

Также особенностью изобретения является установка, предназначенная для проведения описанного выше процесса.

В частности, особенностью изобретения является установка для синтеза аммиака, в которой секция первичного риформинга включает трубчатый риформер с трубками, заполненными катализатором и выполненными из одного из упомянутых выше сплавов.

Преимущества изобретения будут более очевидны из приведенного далее подробного описания со ссылкой на чертежи.

Краткое описание чертежей

на фигуре представлена блок-схема установки для синтеза аммиака, в соответствии с вариантом выполнения изобретения.

Подробное описание осуществления изобретения

На фигуре показана блок-схема установки 1 для синтеза аммиака, включающая головную секцию 2 и контур 3 синтеза аммиака. В головной секции 2 получают подпиточный синтез-газ 21, который сжимают в газовом компрессоре 9 и подают в контур 3 синтеза аммиака.

Головная секция 2 включает: первичный риформер 4; вторичный риформер 5; воздушный компрессор 6; секцию 7 очистки; узел 8 осушки газа. Воздушный компрессор 6 и главный компрессор 9 синтез-газа приводятся в действие непосредственно от соответствующих паровых турбин 10 и 11. Воздушный компрессор 6, предпочтительно, имеет встроенный редуктор.

Контур 3 имеет блок 12, содержащий по меньшей мере один каталитический реактор, газоохладитель и сепаратор жидкости для получения жидкого аммиака 23. Непрореагировавший газ 24 возвращается обратно в контур 3 другим компрессором 14, также называемым циркулятором.

Углеводородное сырье 15, например природный газ, и водяной пар 16 вступают в каталитическую реакцию в первичном риформере 4 при температуре, равной по меньшей мере 790°С, и давлении, равном по меньшей мере 50 бар.

Газ 17, вышедший после частичного риформинга из первичного риформера 1, далее вступает в реакцию во вторичном риформере 5 с использованием подводимого воздуха 18, нагнетаемого воздушным компрессором 6.

Турбина 10, от которой работает компрессор 6, приводится в действие паром 30 высокого давления, который, предпочтительно, вырабатывается в установке 1 получения аммиака, например, путем рекуперирования тепла выхлопных газов конвективной секции первичного риформера. В соответствии с предпочтительным вариантом выполнения, водяной пар 16 для первичного риформинга извлекается из этой турбины 10.

В некоторых вариантах выполнения, количество пара 30 превышает количество, необходимое для приведения в действие компрессора 6. Таким образом, турбина 10 может быть соединена также с электрическим генератором.

Газ 19, подвергнутый полному риформированию, покидающий вторичный риформер 5, обрабатывается в секции 7 очистки, например, конверсией сдвига, удалением двуокиси углерода и метанизацией, в результате чего получается очищенный синтез-газ 20. Газ 20 далее направляется в узел 8 осушки для удаления содержащейся в нем воды, с получением в основном обезвоженного потока 21. Узлом 8 осушки, предпочтительно, является узел аммиачной промывки.

Согласно изобретению, молярное отношение водород/азот в потоке 21 составляет от 2,5 до 3.

Поток 21 направляется во всасывающую сторону главного компрессора 9 синтез-газа, а полученный синтез-газ 22 высокого давления, предпочтительно подается в циркулятор 14, как показано на фиг. 1.

Из контура 3 отводится продувочный поток 27, содержащий непрореагировавшие водород с азотом и инертные газы (например, аргон и метан), который, например, образует выходной поток 26 циркулятора 14. Этот продувочный поток 27 направляется в узел 13 извлечения водорода для отделения обогащенного водородом газового потока 25, который возвращается на всасывающую сторону циркулятора 14, где он смешивается с потоком 24. Этот обогащенный водородом газовый поток 25 используется для регулирования соотношения Н2 и N2, в частности, когда это соотношение в потоках 21 и 22 (вырабатываемых головной секцией 2) ниже 3. Путем добавления водорода, выделенного из продувочного потока 27, это соотношение доводится до 3 или делается близким к 3, как это требуется для синтеза аммиака.


СПОСОБ ПОЛУЧЕНИЯ АММИАКА
СПОСОБ ПОЛУЧЕНИЯ АММИАКА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 73.
27.03.2020
№220.018.10ca

Способ оперативного количественного анализа потока в промышленной установке синтеза мочевины

Изобретение относится к способу оперативного количественного анализа по меньшей мере одного технологического потока процесса синтеза мочевины, в котором мочевину синтезируют из аммиака и двуокиси углерода под давлением в диапазоне от 100 до 300 бар и температуре в диапазоне от 50 до 250°С....
Тип: Изобретение
Номер охранного документа: 0002717678
Дата охранного документа: 25.03.2020
17.04.2020
№220.018.14f0

Ультразвуковая обработка в процессе синтеза мочевины или меламина

Изобретение относится к способу синтеза мочевины из аммиака и диоксида углерода внутри химического реактора. Способ включает ультразвуковую обработку по меньшей части реакционной жидкой массы или двухфазной смеси, содержащейся внутри этого химического реактора. Также предложены способ получения...
Тип: Изобретение
Номер охранного документа: 0002718901
Дата охранного документа: 15.04.2020
22.04.2020
№220.018.16dc

Способ получения азотной кислоты

Изобретение может быть использовано в химической промышленности. Способ совмещенного синтеза аммиака и азотной кислоты включает синтез азотной кислоты, при осуществлении которого подвергают поток аммиака окислению с получением газового потока, содержащего оксиды азота. Полученный газовый поток...
Тип: Изобретение
Номер охранного документа: 0002719430
Дата охранного документа: 17.04.2020
22.04.2020
№220.018.1724

Способ производства аммиака

Изобретение относится к способу производства аммиака путем каталитической конверсии подпиточного газа, содержащего водород и азот, а также к установке для его осуществления и к способу модернизации контура синтеза аммиака. Способ включает по меньшей мере две реакционные стадии синтеза аммиака,...
Тип: Изобретение
Номер охранного документа: 0002719425
Дата охранного документа: 17.04.2020
25.04.2020
№220.018.18f7

Трубный изотермический каталитический реактор

Изобретение относится к каталитическому реактору. Вертикальный химический реактор включает трубный теплообменник (6), погруженный в каталитический слой и содержащий группу пучков (6.1, 6.2) прямых труб с соответствующими трубными досками, предназначенными для подвода (9.1, 9.2) и сбора (10.1,...
Тип: Изобретение
Номер охранного документа: 0002719986
Дата охранного документа: 23.04.2020
26.04.2020
№220.018.1a11

Реактор-конденсатор для синтеза мочевины

Изобретение относится к совмещенному реактору-конденсатору (1) для синтеза мочевины из аммиака и двуокиси углерода. Реактор-конденсатор (1) включает конденсационную секцию (3), соединенную с реакционной секцией (2), и содержит по меньшей мере один направленный в конденсационную секцию вход для...
Тип: Изобретение
Номер охранного документа: 0002720083
Дата охранного документа: 24.04.2020
04.05.2020
№220.018.1b39

Стенка для слоев катализатора в реакторах и способ ее выполнения

Изобретение относится к каталитическому химическому реактору с газопроницаемой стенкой и способу изготовления газопроницаемой стенки. Реактор содержит слой катализатора, газопроницаемую стенку, представляющую собой узел из нескольких панелей, проходящих на протяжении углового сектора...
Тип: Изобретение
Номер охранного документа: 0002720315
Дата охранного документа: 28.04.2020
20.05.2020
№220.018.1de2

Способ модернизации секции удаления со, предназначенной для очистки водородосодержащего газа

Группа изобретений может быть использована в химической промышленности для производства водородосодержащего синтез-газа. Модернизация секции удаления диоксида углерода, предназначенной для отвода двуокиси углерода из водородосодержащего синтез-газа и включающей секцию (2) абсорбции и десорбер...
Тип: Изобретение
Номер охранного документа: 0002721114
Дата охранного документа: 15.05.2020
23.05.2020
№220.018.2051

Способ производства мочевины с высокотемпературным стриппингом

Изобретение относится к области производства мочевины, прежде всего, к высокотемпературному стриппингу в способе производства мочевины из аммиака и диоксида углерода. Способ включает образование водного раствора мочевины при давлении синтеза, причем раствор содержит непревращенный карбамат...
Тип: Изобретение
Номер охранного документа: 0002721699
Дата охранного документа: 21.05.2020
04.06.2020
№220.018.23f2

Реактор, предназначенный для окисления аммиака при получении азотной кислоты

Изобретение относится к области промышленного получения азотной кислоты, в частности к способу получения азотной кислоты, реактору, предназначенному для каталитического окисления аммиака, предназначенному для последующего получения азотной кислоты, и способу переоборудования реактора,...
Тип: Изобретение
Номер охранного документа: 0002722645
Дата охранного документа: 02.06.2020
Показаны записи 41-42 из 42.
20.04.2023
№223.018.4e18

Способ снижения содержания noи no в хвостовом газе процесса получения азотной кислоты

Группа изобретений относится к способу снижения содержания NO и NO в хвостовом газе процесса получения азотной кислоты. Способ снижения содержания NO и NO во входном хвостовом газе процесса получения азотной кислоты включает стадию сокращения выбросов, включающую по меньшей мере стадию deNO и...
Тип: Изобретение
Номер охранного документа: 0002793239
Дата охранного документа: 30.03.2023
03.06.2023
№223.018.7687

Химический реактор радиального или аксиально-радиального типа с мелкозернистым катализатором

Изобретение относится к каталитическим реакторам. Описан реактор для каталитических химических реакций, содержащий слой катализатора, имеющий форму цилиндрического кольца и радиальное или комбинированное аксиально-радиальное направление пересекающего потока; по меньшей мере первую...
Тип: Изобретение
Номер охранного документа: 0002796531
Дата охранного документа: 25.05.2023
+ добавить свой РИД