×
10.11.2019
219.017.e042

Результат интеллектуальной деятельности: СПОСОБ НЕЛИНЕЙНО-ОПТИЧЕСКОГО ОГРАНИЧЕНИЯ МОЩНОСТИ НА ОСНОВЕ ВОДНОЙ СУСПЕНЗИИ УГЛЕРОДНЫХ НАНОТРУБОК

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическому приборостроению и может быть использовано в оптических приборах и средствах защиты органов зрения от действия мощного излучения. Способ нелинейно-оптического ограничения мощности на основе водной суспензии углеродных нанотрубок включает пропускание направленного потока излучения последовательно через собирающую линзу и оптическую кювету, заполненную водной суспензией углеродных нанотрубок и размещенную в фокусе собирающей линзы. Оптическую кювету помещают в термостат и поддерживают температуру суспензии в пределах от 38 до 50°С. Технический результат заключается в уменьшении пороговой плотности энергии нелинейно-оптического ограничения мощности в водной суспензии углеродных нанотрубок. 1 з.п. ф-лы, 4 ил.

Изобретение относится к оптическому приборостроению и может быть использовано в оптических приборах и средствах защиты органов зрения от действия мощного излучения.

Известен способ нелинейно-оптического ограничения мощности, при котором направленный поток излучения последовательно пропускают через собирающую линзу, оптическую кювету, заполненную суспензией из наноуглеродных частиц луковичной структуры в диметилформамиде и расположенную в фокусе собирающей линзы, а далее через коллимирующую линзу. [Михеев Г.М., Могилева Т.Н., Кузнецов В.Л., Булатов Д.Л. Устройство для ограничения светового потока // Патент РФ на изобретение №2403599. Бюл. №31. 2010.]

Недостатком данного способа является то, что при достаточно большой интенсивности светового потока происходит просветление указанной суспензии в точке фокусировки за счет индуцированных светом химических реакций, вследствие чего требуется применение источника неоднородного магнитного поля для выталкивания просветленной фракции суспензии из зоны взаимодействия. Другим недостатком является применение в качестве дисперсионной среды диметилформамида, являющегося опасным для человека веществом.

Наиболее близким по технической сущности к заявленному является способ нелинейно-оптического ограничения мощности на основе водной суспензии углеродных нанотрубок, включающий пропускание направленного потока излучения последовательно через собирающую линзу и оптическую кювету, заполненную водной суспензией углеродных нанотрубок и размещенную в фокусе собирающей линзы, в котором водная суспензия углеродных нанотрубок имеет комнатную температуру [Vivien L., Lancon P., Riehl D., Hache F., Anglaret E. Carbon nanotubes for optical limiting // Carbon. 2002. Vol. 40, №10. P. 1789-1797].

Недостатком указанного способа является относительно высокая пороговая плотность энергии (порог) нелинейно-оптического ограничения мощности в используемой суспензии - плотность энергии падающего излучения, при которой нелинейный коэффициент пропускания суспензии уменьшается на 10 процентов относительно коэффициента линейного пропускания, - что снижает практическую применимость способа в области излучений с малой интенсивностью. Кроме того, используемые в способе углеродные нанотрубки без специальной обработки образуют водные суспензии со слабой коллоидной устойчивостью, быстро выпадающие в осадок.

Задачей изобретения является разработка способа нелинейно-оптического ограничения мощности на основе водной суспензии углеродных нанотрубок с меньшей пороговой плотностью энергии нелинейно-оптического ограничения мощности.

Сущность изобретения заключается в том, что в отличие от известного способа нелинейно-оптического ограничения мощности на основе водной суспензии углеродных нанотрубок, включающего пропускание направленного потока излучения последовательно через собирающую линзу и оптическую кювету, заполненную водной суспензией углеродных нанотрубок и размещенную в фокусе собирающей линзы, оптическую кювету помещают в термостат и поддерживают температуру суспензии в пределах от 38 до 50°С.

Предпочтительным является способ, в котором водную суспензию готовят из углеродных нанотрубок, на поверхности которых сформированы кислородсодержащие группы, способствующие образованию коллоидного раствора нанотрубок в воде.

Техническим результатом изобретения является уменьшение пороговой плотности энергии нелинейно-оптического ограничения мощности в водной суспензии углеродных нанотрубок.

Фиг. 1 показывает способ нелинейно-оптического ограничения мощности на основе водной суспензии углеродных нанотрубок по данному изобретению: 1 - оптическая кювета с водной суспензией углеродных нанотрубок; 2 - термостат, 3 - блок управления термостатом; 4 - собирающая линза; штриховые линии - направленный поток излучения.

Фиг. 2 показывает схему измерения нелинейно-оптических свойств водной суспензии углеродных нанотрубок методом z-сканирования при нагреве: 5 - платформа; 6 - однокоординатный столик; 7 - лазер; 8 - плоскопараллельная оптическая делительная пластина; 9 - поглощающий экран; 10, 12, 13 - нейтральные светофильтры; 11, 14 - фотоприемники; штрих-пунктирные линии - ход луча лазера; +Z, 0, -Z -положительное направление, начало отсчета и отрицательное направление оси z сфокусированного лазерного пучка соответственно (z=0 в перетяжке пучка).

Фиг. 3 показывает экспериментальные зависимости нормированного коэффициента пропускания Тнорм водной суспензии многослойных углеродных нанотрубок от нормированной координаты z/z0 (а) и от плотности энергии падающего излучения D (б), полученные при температуре t равной 23, 31, 40 и 90°С: точки - эксперимент; кривые -аппроксимирующие функции.

Фиг. 4 показывает зависимость пороговой плотности энергии Dпор нелинейно-оптического ограничения мощности в водной суспензии многослойных углеродных нанотрубок от температуры: точки - эксперимент; кривая - аппроксимирующая функция.

Способ нелинейно-оптического ограничения мощности на основе водной суспензии углеродных нанотрубок по данному изобретению осуществляется следующим образом. Оптическую кювету 1 с водной суспензией углеродных нанотрубок (Фиг. 1) помещают в оснащенный входным и выходным оптическими окнами термостат 2, которым управляют при помощи блока 3 управления термостатом, и поддерживают температуру суспензии в пределах от 38 до 50°С. Помещенную в термостат кювету размещают в фокусе собирающей линзы 4. Направленный поток излучения последовательно пропускают через собирающую линзу и оптическую кювету. При превышении плотности энергии направленного потока в точке фокусировки над пороговой происходит нелинейно-оптическое ограничение мощности проходящего через кювету излучения. В случае необходимости волновой фронт проходящего излучения корректируют с помощью коллимирующей линзы, объектива или иной оптической системы.

Нелинейно-оптическое ограничение мощности является нелинейным эффектом, при котором коэффициент пропускания среды нелинейно уменьшается с увеличением интенсивности падающего излучения. Пороговая плотность энергии нелинейно-оптического ограничения мощности в водных суспензиях углеродных нанотрубок определяется образованием паровых пузырьков, приводящим к нелинейному рассеянию света и уменьшению коэффициента пропускания среды. Согласно этому механизму порог нелинейно-оптического ограничения мощности зависит от температуры кипения воды и температуры самой суспензии. При этом нагрев воды и ее парообразование происходят за счет получения тепла от наночастиц, хорошо поглощающих падающее излучение.

В работе [Yu Н., Kim S. W. Temperature effects in an optical limiter using carbon nanotube suspensions // Journal of the Korean Physical Society. 2005. Vol. 47, №4. P. 610-614] показано, что с увеличением температуры эффективность нелинейно-оптического ограничения мощности в суспензиях многослойных углеродных нанотрубок в воде возрастает. Однако из-за относительно большого разброса экспериментальных данных точная зависимость пороговой плотности энергии от температуры в указанной работе отсутствует. С помощью оригинальной лазерной системы z-сканирования нами впервые с высокой точностью измерена зависимость порога нелинейно-оптического ограничения мощности в водной суспензии многослойных углеродных нанотрубок от температуры.

Многослойные углеродные нанотрубки были синтезированы методом электродугового испарения графита. Большинство нанотрубок имело диаметр от 15 до 20 нм и длину менее 1 мкм. Для очистки их от наночастиц аморфного углерода, нанографита и стеклоуглерода, а также для придания способности образовывать устойчивые суспензии в воде использовалась химическая обработка [Окотруб А.В., Юданов Н.Ф., Алексашин В.М., Булушева Л.Г., Комарова О.А., Костас У.О., Гевко П.Н., Антюфеева Н.В., Ильченко С.И., Гуняев Г.М. Исследование термических и механических свойств композитов из электродуговых углеродных нанотруб и термостойкого связующего на основе цианового эфира // Высокомолекулярные соединения. Сер. А. 2007. Т. 49, №6. С. 1049-1055]. При этом в результате окисления нанотрубок в растворе перманганата калия в серной кислоте на их поверхности сформировались кислородсодержащие группы, способствующие образованию коллоидного раствора нанотрубок в воде. Полученные водные суспензии углеродных нанотрубок показали высокую стабильность во времени. Например, у суспензии с концентрацией 0,01 вес. % за время хранения при комнатной температуре в течение 7 лет отсутствовали признаки седиментации.

Z-сканирование исследуемой суспензии проводилось по оптической схеме, представленной на Фиг. 2. Термостат с оптической кюветой, заполненной исследуемой суспензией, помещался на платформе 5 однокоординатного столика 6. С помощью специального электронного блока управления термостатом температура в нем поддерживалась на заранее заданном уровне с точностью ±0,5°С. Кювета герметично закрывалась во избежание интенсивного испарения воды при нагреве. Рабочая толщина кюветы составляла 1 мм, концентрация суспензии равнялась 0,001 вес. %. Кювета, размещенная в термостате, была наклонена под углом 45° к падающему лучу лазера, чтобы исключить влияние интерференции лазерных пучков, отраженных от лицевой и тыльной поверхностей кюветы, на измеряемый коэффициент нелинейного пропускания суспензии в ходе z-сканирования. Линейный коэффициент пропускания суспензии на длине волны 532 нм составлял 65%, а плотность энергии падающего излучения в перетяжке равнялась 0,35 Дж/см2. В качестве лазерной накачки использовалось импульсное, с длительностью импульса 13,6 нс и длиной волны 532 нм излучение второй гармоники одномодового одночастотного YAG:Nd3+-лазера 7 с пассивной модуляцией добротности. Сначала лазерный пучок пропускали через установленную под углом падения 45° плоскопараллельную оптическую делительную пластину 8 такой толщины, чтобы отраженные от ее лицевой и тыльной поверхностей лучи лазера были разделены в пространстве. Это предотвращало интерференцию отраженных пучков и поддерживало постоянство коэффициента отражения от указанных поверхностей при скачкообразном изменении продольной моды резонатора лазера. Отраженный от тыльной поверхности пластины пучок гасили поглощающим экраном 9. Пучок, отраженный от лицевой поверхности, после ослабления нейтральным светофильтром 10 направляли на опорный калиброванный фотоприемник 11 для измерения энергии Евх падающих на кювету лазерных импульсов. Лазерный пучок, прошедший через делительную пластину, ослабляли с помощью нейтрального светофильтра 12 и фокусировали на кювету длиннофокусной собирающей линзой с фокусным расстоянием 0,15 м. Диаметр пучка в перетяжке составлял 68 мкм. При перемещении кюветы вдоль оси z сфокусированного лазерного пучка определяли энергию Евых лазерных импульсов, прошедших через кювету. Для этого ослабленное нейтральным светофильтром 13 излучение лазера регистрировали сигнальным калиброванным фотоприемником 14.

Показания фотоприемников позволили для каждой нормированной координаты z/z0 (z0=πw02/λ - длина Рэлея, λ - длина световой волны, w0 - радиус перетяжки сфокусированного лазерного пучка) определить нормированный коэффициент пропускания Тнорм=Т/Т0 водной суспензии многослойных углеродных нанотрубок, где Т=Евыхвх - коэффициент нелинейного пропускания суспензии, Т0 - линейный коэффициент пропускания суспензии, измеренный относительной идентичной кюветы с дистиллированной водой. Экспериментальные зависимости Тнорм(z/z0) (Фиг. 3, а), полученные при различных температурах, имеют минимум при z равном нулю и симметричны относительно этой точки. Соответствующие им зависимости Тнорм от плотности энергии падающего излучения (Фиг. 3, б) свидетельствуют об уменьшении порога нелинейно-оптического ограничения мощности с увеличением температуры суспензии. Представленная на Фиг. 4 зависимость порога нелинейно-оптического ограничения мощности от температуры показывает, что увеличение температуры суспензии всего на 17°С от комнатной приводит к существенному уменьшению порога. При этом, как видно из Фиг. 4, в диапазоне температур от 40 до 90°С значение Dпор остается практически без изменений, то есть дальнейшее уменьшение порога с ростом температуры отсутствует.

Полученную зависимость Dпор(t) можно объяснить следующим образом. Углеродные нанотрубки в суспензии находятся во взвешенном состоянии благодаря силе взаимного электростатического отталкивания. Вблизи поверхности нанотрубок образуется двойной электрический слой и молекулы воды, расположенные в этой области, находятся в своего рода потенциальной яме. Это означает, что часть энергии импульса лазерного излучения, поглощаемая молекулами воды, находящимися вблизи углеродных нанотрубок, расходуется на преодоление этого потенциального барьера. С учетом данного обстоятельства энергия ΔQ, требуемая для превращения воды массой Δm в пар, равняется:

где Q1 - энергия, необходимая для преодоления потенциального барьера на двойном электрическом слое; Q2 и Q3 - энергии, необходимые для нагрева до температуры кипения и для превращения в пар соответственно; Q2=ΔmΔtC, Q3=ΔmL, Δt - разность между температурой суспензии в исходном состоянии и температурой кипения, С - удельная темплоемкость, L - удельная теплота парообразования воды. Ввиду малой концентрации углеродных нанотрубок в исследуемой суспензии можно считать, что ее удельная теплоемкость и температура кипения мало отличаются от соответствующих значений для воды. С учетом табличный значений С=4183 Дж/(кг⋅°С) и L=2258 кДж/кг и полагая, что Δt=77°С (разница между комнатной температурой и температурой кипения воды), получаем Q2 существенно меньше Q3. Очевидно, что при увеличении температуры суспензии значение Q1 стремится к нулю, что приводит к соответствующему уменьшению Dпор. При некоторой температуре tкрит энергия Q1 становится равной нулю. При всех других температурах t больше tкрит энергия Q1 остается равной нулю и, в соответствии с относительной малостью Q2, пороговая плотность энергии тоже остается практически без изменений. Все это хорошо согласуется с результатами, представленными на Фиг. 4.

Таким образом, из полученных данных следует, что порог нелинейно-оптического ограничения мощности в водной суспензии углеродных нанотрубок, находящейся при комнатной температуре, более чем в три раза уменьшается при ее нагреве до 40°С. Дальнейшее увеличение температуры до 90°С приводит к едва заметному изменению пороговой плотности энергии. Это объясняется влиянием потенциальной энергии двойного электрического слоя и удельной теплоты парообразования на возникновение пузырьков пара, приводящее к нелинейному рассеянию света. Все вышесказанное гарантирует возможность достижения заявленного технического результата.


СПОСОБ НЕЛИНЕЙНО-ОПТИЧЕСКОГО ОГРАНИЧЕНИЯ МОЩНОСТИ НА ОСНОВЕ ВОДНОЙ СУСПЕНЗИИ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ НЕЛИНЕЙНО-ОПТИЧЕСКОГО ОГРАНИЧЕНИЯ МОЩНОСТИ НА ОСНОВЕ ВОДНОЙ СУСПЕНЗИИ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ НЕЛИНЕЙНО-ОПТИЧЕСКОГО ОГРАНИЧЕНИЯ МОЩНОСТИ НА ОСНОВЕ ВОДНОЙ СУСПЕНЗИИ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ НЕЛИНЕЙНО-ОПТИЧЕСКОГО ОГРАНИЧЕНИЯ МОЩНОСТИ НА ОСНОВЕ ВОДНОЙ СУСПЕНЗИИ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ НЕЛИНЕЙНО-ОПТИЧЕСКОГО ОГРАНИЧЕНИЯ МОЩНОСТИ НА ОСНОВЕ ВОДНОЙ СУСПЕНЗИИ УГЛЕРОДНЫХ НАНОТРУБОК
Источник поступления информации: Роспатент

Показаны записи 11-20 из 23.
27.07.2019
№219.017.b9d3

Способ нанесения защитного противокоррозионного покрытия на стальные изделия и реагент для осуществления вышеуказанного способа

Изобретение относится к антикоррозионной обработке поверхности стальных изделий. Способ включает обработку поверхности стальных изделий в водном растворе реагента, в качестве которого применяют декагидрат бис(нитрило-трис-метиленфосфонато-аква-плюмбата(II)) тетранатрия, последующую сушку...
Тип: Изобретение
Номер охранного документа: 0002695717
Дата охранного документа: 25.07.2019
12.10.2019
№219.017.d526

Способ закалки металлических изделий при термомеханической обработке

Изобретение относится к металлургии и машиностроению и может быть использовано для закалки изделий, выполненных из углеродистых и легированных сталей. Для повышения эффективности охлаждения и расширения диапазона закаливания металлических изделий охлаждающую среду подают на заданном расстоянии...
Тип: Изобретение
Номер охранного документа: 0002702524
Дата охранного документа: 08.10.2019
21.12.2019
№219.017.efd4

Зимняя рукавица с внутренним подогреваемым карманом

Изобретение относится к области индивидуальных средств защиты пальцев рук шофера от обморожений во время работы на сильном морозе. Рукавица выполнена из материалов, сохраняющих эластичность и целостность при многократном сгибании-разгибании при температуре 0 -80°С, карман размещен внутри...
Тип: Изобретение
Номер охранного документа: 0002709633
Дата охранного документа: 19.12.2019
23.02.2020
№220.018.0533

Меховая муфта для теплоизоляции руки снайпера при стрельбе из снайперской винтовки

Изобретение относится к зимней верхней одежде и, в частности, к системам защиты рук снайпера от обморожения при стрельбе из снайперской винтовки и предназначено для теплоизоляции кисти рабочей руки снайпера при длительном выжидании, прицеливании и выполнении нескольких выстрелов на морозе....
Тип: Изобретение
Номер охранного документа: 0002714948
Дата охранного документа: 21.02.2020
05.03.2020
№220.018.08da

Способ укоренения ремонтантной земляники в культуре in vitro

Изобретение относится к области биотехнологии. Изобретение представляет собой способ укоренения микрочеренков земляники ремонтантной, включающей укоренение микрочеренков in vitro на питательной среде по прописи Мурасиге-Скуга с добавлением продуктов жизнедеятельности восковой моли и...
Тип: Изобретение
Номер охранного документа: 0002715695
Дата охранного документа: 02.03.2020
14.03.2020
№220.018.0be8

Способ оценки износостойкости материала

Изобретение относится к оценке массового износа при трибологических испытаниях покрытий, слоев, включений малой толщины и может быть использовано для оценки износостойкости тонких покрытий. Способ включает использование группы не менее чем из двух идентичных образцов с нанесенным покрытием,...
Тип: Изобретение
Номер охранного документа: 0002716496
Дата охранного документа: 12.03.2020
27.03.2020
№220.018.106c

Консервант для анатомических препаратов

Изобретение относится к медицине и фармации. Консервант для анатомических препаратов, предназначенный для хранения изолированных органов и тканей с целью открытой демонстрации студентам и школьникам в процессе их обучения анатомии, включает 3-йодопроп-2-ин-1-ил бутилкарбамат, щелочной буфер,...
Тип: Изобретение
Номер охранного документа: 0002717657
Дата охранного документа: 24.03.2020
13.06.2020
№220.018.26b5

Способ применения раствора для удаления зубного налета с помощью ирригатора

Изобретение относится к области косметологии и фармацевтики и представляет собой применение раствора для удаления зубного налета с помощью ирригатора, где раствор включает 2,0-10,0% натрия гидрокарбоната, 2,7-3,3% перекиси водорода, воду для инъекций и дополнительно газирован аргоном при...
Тип: Изобретение
Номер охранного документа: 0002723138
Дата охранного документа: 09.06.2020
03.07.2020
№220.018.2e25

Способ скрининга стоматологических очистителей на модели прозрачных зубов, покрытых зубным налетом

Изобретение относится к медицине и может быть использовано при поиске, разработке и оценке новых фармакологических, санитарно-гигиенических, косметических средств и медицинских технологий, предназначенных для экстренной очистки в полости рта всех открытых поверхностей зубов и стоматологических...
Тип: Изобретение
Номер охранного документа: 0002725131
Дата охранного документа: 30.06.2020
12.04.2023
№223.018.43eb

Способ получения композиционных алюмоматричных материалов, содержащих борид титана, методом самораспространяющегося высокотемпературного синтеза

Изобретение относится к металлургии, а именно к способам получения композиционных материалов на основе алюминия или его сплавов с применением самораспространяющегося высокотемпературного синтеза (СВС). Способ получения алюмоматричного материала с керамическими составляющими борида титана...
Тип: Изобретение
Номер охранного документа: 0002793662
Дата охранного документа: 04.04.2023
Показаны записи 11-16 из 16.
10.11.2015
№216.013.8eb6

Способ записи изображений

Изобретение относится к области записи изображений. Способ заключается в том, что на стеклянной подложке формируют светочувствительный слой пленки из однослойных углеродных нанотрубок, содержащих инкапсулированные наночастицы железа. Поверх пленки наносят слой раствора кислоты и облучают пленку...
Тип: Изобретение
Номер охранного документа: 0002568143
Дата охранного документа: 10.11.2015
20.04.2016
№216.015.3418

Способ детекции проникновения углеродных нанотрубок в биологическую ткань

Изобретение относится к области нанотехнологий и молекулярной биологии. Предложен способ детекции проникновения углеродных нанотрубок (УНТ) в биологическую ткань, геном клеток которой содержит промотор гена теплового шока, сшитый с кодирующей областью дрожжевого транскрипционного фактора Gal4,...
Тип: Изобретение
Номер охранного документа: 0002582286
Дата охранного документа: 20.04.2016
26.08.2017
№217.015.e30b

Способ измерения нелинейно-оптических свойств веществ и материалов методом z-сканирования при монохроматической лазерной накачке

Изобретение относится к оптическому приборостроению. Способ измерения нелинейно-оптических свойств веществ и материалов методом z-сканирования при монохроматической лазерной накачке включает измерение зависимости коэффициента пропускания плоскопараллельного исследуемого образца при его...
Тип: Изобретение
Номер охранного документа: 0002626060
Дата охранного документа: 21.07.2017
19.01.2018
№218.016.0954

Способ определения знака поляризации циркулярно и эллиптически поляризованного лазерного излучения

Изобретение относится к области оптического приборостроения и касается способа определения знака поляризации циркулярно и эллиптически поляризованного лазерного излучения. Способ включает в себя воздействие анализируемым излучением на снабженный двумя электродами пленочный фоточувствительный...
Тип: Изобретение
Номер охранного документа: 0002631919
Дата охранного документа: 28.09.2017
01.03.2019
№219.016.d075

Способ получения материала для автоэмиссионного катода

Изобретение может быть использовано в электронике и нанотехнологии. Способ получения материала для автоэмиссионного катода на основе углеродных нанотруб заключается в осаждении модифицирующего материала - дисульфида молибдена на поверхность нанотруб из смеси раствора тиомочевины и молибдата...
Тип: Изобретение
Номер охранного документа: 0002463253
Дата охранного документа: 10.10.2012
01.11.2019
№219.017.dc6b

Система химического осаждения из газовой фазы для роста графена

Изобретение относится к технологии химического осаждения из газовой фазы CVD и может быть использовано для синтеза углеродных наноматериалов, таких как пленки графена, многослойного графена, углеродных нанотрубок. Система химического осаждения из газовой фазы для роста графена содержит...
Тип: Изобретение
Номер охранного документа: 0002704691
Дата охранного документа: 30.10.2019
+ добавить свой РИД