×
10.11.2019
219.017.e032

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФК). Способ управления газотурбинным двигателем с форсажной камерой сгорания (ФКС), включает управление расходом топлива в форсажную камеру сгорания по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению рычага управления двигателем, управление гидроцилиндрами привода створок реактивного сопла по измеренным перепаду давлений газа на турбине двигателя. При этом формируют заданное значение пускового расхода топлива в форсажную камеру сгорания по измеренным давлению воздуха за компрессором и температуре воздуха на входе в двигатель, подают в форсажную камеру сгорания пусковой расход форсажного топлива, включают агрегат зажигания форсажной камеры сгорания, контролируют розжиг форсажной камеры сгорания, дополнительно измеряют частоту вращения ротора турбокомпрессора, до достижения частоты вращения ротора турбокомпрессора заранее выбранного значения и поддерживают постоянное положение гидроцилиндров привода створок реактивного сопла, при котором обеспечивается заранее выбранное значение площади критического сечения реактивного сопла, и блокируют подачу топлива в основные коллекторы форсажной камеры сгорания. Техническим результатом заявленного изобретения является повышение качества управления ГТД с ФКС за счет обеспечения необходимых условий для запуска ФКС на любых режимах работы ГТД, что приводит к снижению времени полной приемистости двигателя. 1 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФК).

Известен способ управления ГТД с ФКС, заключающийся в том, что по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению рычага управления двигателем (РУД) и расходу топлива в основную камеру (ОКС) сгорания управляют расходом топлива в ФКС, причем дополнительно на установившихся форсажных режимах измеряют давление и температуру газов в ФКС, подают возрастающее по частоте пульсирующее воздействие на расход воздуха через двигатель с помощью направляющих аппаратов компрессора (НАК) и створок реактивного сопла (PC) двигателя, в момент увеличения полноты сгорания форсажного топлива, определяемый по скачкообразному росту давления и температуры газов в ФКС, фиксируют частоту пульсирующего воздействия на расход воздуха через двигатель и уменьшают расход форсажного топлива до тех пор, пока температура газов в ФКС не снизится до исходной (см. патент РФ №2386837, кл. F02C 9/00, 2009 г.).

В результате анализа известного способа необходимо отметить, что после розжига форсажной камеры на установившихся режимах достигается минимальный удельный расход топлива. Однако не решается задача создания оптимальных условий для запуска форсажной камеры сгорания в установившихся и переходных режимах работы двигателя, что ограничивает диапазон режимов работы двигателя, в котором обеспечивается надежный розжиг камеры сгорания.

Известен способ управления газотурбинным двигателем с форсажной камерой сгорания, заключающийся в том, что в процессе работы двигателя посредством датчиков измеряют параметры работы двигателя, сравнивают их с заданными и по величине рассогласования управляют положением распределительного золотника, управляющего гидроцилиндрами, регулирующими положение створок критического сечения реактивного сопла двигателя, при запуске двигателя распределительный золотник перемещают в нейтральное положение, на дроссельных режимах работы двигателя определяют приведенную частоту вращения ротора турбокомпрессора и положение гидроцилиндра реактивного сопла и по результатам сравнения данных сигналов получают управляющий сигнал, в соответствии с которым регулируют положение распределительного золотника для поддержания заданной площади реактивного сопла, на максимальных бесфорсажных и форсажных режимах по измеренным значениям давления в двух заданных сечениях двигателя формируют текущее значение отношения давлений в этих сечениях, которое сравнивают с заданным значением и по величине ошибки, полученной в результате сравнения, формируют заданное значение положения распределительного золотника, а при останове двигателя распределительный золотник перемещают в положение для полного раскрытия реактивного сопла (см. патент РФ №2466287, кл. F02C 9/28, 2012 г.).

В результате анализа известного способа необходимо отметить, что он не может обеспечить надежный запуск ФК на дроссельных режимах работы ГТД, что приводит к увеличению времени полной приемистости двигателя.

Наиболее близким к заявленному изобретению по технической сущности и достигаемому техническому результату является способ управления газотурбинным двигателем с форсажной камерой сгорания (ФКС) заключающийся в том, что по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению РУД, и расходу топлива в основную камеру сгорания управляют расходом топлива в ФКС, по измеренным положению РУД и перепаду давлений газа на турбине двигателя формируют заданное положения створок PC, сравнивают его с измеренным и по полученной ошибке регулирования управляют гидроцилиндрами привода створок PC, дополнительно в зависимости от параметров двигателя и воздушного потока на входе в двигатель формируют расчетное значение положения створок PC, корректируют его в зависимости от индивидуальных характеристик двигателя, сравнивают корректированное расчетное значение положения створок PC с измеренным, если рассогласование между корректированным расчетным и измеренным положениями створок PC больше наперед заданной величины, определяемой расчетно-экспериментальным путем, формируют сигнал «Отказ датчика положения створок РС» и продолжают управлять гидроцилиндрами привода створок PC по величине рассогласования между заданным положением створок PC и корректированным расчетным (см. патент РФ №2442001, кл. F02C 9/00, 05.03.2019 г.) - наиболее близкий аналог.

В результате анализа данного способа необходимо отметить, что выбранный способ управления критическим сечением PC, а именно поддержание положения створок PC (фактически, площади критического сечения PC) в зависимости от перепада давлений газа на турбине, приводит к существенно разным площадям Fкр при близких значениях перепада давлений газа на турбине на дроссельных режимах работы двигателя из-за докритического перепада давлений на турбине, как следствие ухудшается надежность запуска ФКС на дроссельных режимах. Для повышения устойчивости запуска ФКС приходится смещать момент ее запуска на режим работы ГТД, близкий к максимальному, что приводит к увеличению времени полной приемистости двигателя.

Техническим результатом заявленного изобретения является повышение качества управления ГТД с ФКС за счет обеспечения необходимых условий для запуска ФКС на любых режимах работы ГТД, что приводит к снижению времени полной приемистости двигателя.

Указанный технический результат достигается тем, что в способе управления газотурбинным двигателем с форсажной камерой сгорания (ФКС), включающим управление расходом топлива в форсажную камеру сгорания по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению рычага управления двигателем, управление гидроцилиндрами привода створок реактивного сопла по измеренным перепаду давлений газа на турбине двигателя, новым является то, что формируют заданное значение пускового расхода топлива в форсажную камеру сгорания по измеренным давлению воздуха за компрессором и температуре воздуха на входе в двигатель, подают в форсажную камеру сгорания пусковой расход форсажного топлива, включают агрегат зажигания форсажной камеры сгорания, контролируют розжиг форсажной камеры сгорания, дополнительно измеряют частоту вращения ротора турбокомпрессора, до достижения частоты вращения ротора турбокомпрессора заранее выбранного значения и поддерживают постоянное положение гидроцилиндров привода створок реактивного сопла, при котором обеспечивается заранее выбранное значение площади критического сечения реактивного сопла, и блокируют подачу топлива в основные коллекторы форсажной камеры сгорания.

Сущность заявленного изобретения поясняется схемой системы управления ГТД представленной на фиг. 1, посредством которой может быть реализован заявленный способ.

Система управления ГТД содержит регулятор 1 степени расширения газов на турбине, регулятор 2 площади критического сечения PC, выходы регуляторов 1 и 2 подключены к первому и второму входу переключателя 3 соответственно; выход переключателя 3 связан с входом привода 4 гидроцилиндров створок PC.

Система оснащена датчиком 5 частоты вращения ротора ТК, выход которого подключен к входу компаратора 6, связанного с управляющим входом переключателя 3.

Система также содержит датчик 18 давления воздуха за компрессором, который подключен к первому входу делителя 7, ко второму входу которого подключен датчик 8 давления газа за турбиной. Выход делителя 7 связан с входом регулятора 1 степени расширения газов на турбине.

К первому входу регулятора 2 подключен датчик 9 площади критического сечения PC.

Система оснащена задатчиком 10 расхода топлива в ФКС, при этом первый выход задатчика через ключ 11 подключен к устройству дозирования расхода топлива в основные коллекторы ФКС (на рисунке не показано), а второй выход - с устройством дозирования расхода топлива в пусковой коллектор ФКС (на рисунке не показано). К входам задатчика 10 подключены датчик 18 давления воздуха за компрессором, датчик 12 положения РУД, датчик 13 температуры на входе в ГТД.

Датчик 12 положения РУД также связан с входом компаратора 14, который подключен ко второму входу регулятора 2 площади критического сечения PC и через ключ 15 к агрегату 16 зажигания ФКС.

К управляющему входу ключа 11 подключен выход компаратора 6.

К управляющему входу ключа 15 подключен датчик 17 горения в ФКС.

Система укомплектована стандартными датчиками, компараторами, переключателями и ключами.

В качестве датчиков контроля параметров работы ГТД, могут быть использованы индуктивные датчики частоты вращения, термоэлектрические и терморезистивные датчики температуры, резистивные или емкостные датчики давлений, стандартные линейные дифференциальные трансформаторы для измерения линейных или угловых перемещений.

В качестве датчика 17 горения в ФКС может быть использован датчик пламени ионизационного типа (ДЛИ).

В качестве регулятора 1 может быть использован стандартный ПД-регулятор, настроенный на поддержание заранее выбранной уставки.

В качестве регулятора 2 может быть использован стандартный ПД-регулятор, настроенный на поддержание заранее выбранной уставки, при этом управляющий вход регулятора может изменять уставку регулирования.

Ключ 11 замыкается при наличии сигнала 1 на его управляющем входе.

Ключ 15 замыкается при отсутствии сигнала 1 на своем управляющем входе.

При наличии сигнала 1 на управляющем входе переключателя 3 к его выходу подключен его первый вход, при отсутствии сигнала на управляющем входе к выходу переключателя 3 подключен второй вход.

Система укомплектована стандартными датчиками, компараторами, переключателями, ключами и логическими блоками.

В качестве датчиков контроля параметров работы ГТД, могут быть использованы индуктивные датчики частоты вращения, термоэлектрические и терморезистивные датчики температуры, резистивные или емкостные датчики давлений, стандартные линейные дифференциальные трансформаторы для измерения линейных или угловых перемещений.

В качестве датчика 17 горения в ФКС может быть использован датчик пламени ионизационного типа (ДЛИ).

В качестве регулятора 1 может быть использован стандартный ПД-регулятор, настроенный на поддержание заранее выбранной уставки.

В качестве регулятора 2 может быть использован стандартный ПД-регулятор, настроенный на поддержание заранее выбранной уставки, при этом управляющий вход регулятора может изменять уставку регулирования.

Ключ 11 замыкается при наличии сигнала 1 на его управляющем входе.

Ключ 15 замыкается при отсутствии сигнала 1 на своем управляющем входе.

При наличии сигнала 1 на управляющем входе переключателя 3 к его выходу подключен его первый вход, при отсутствии сигнала на управляющем входе к выходу переключателя 3 подключен второй вход.

В качестве датчика частоты вращения ротора может быть выбран как датчик частоты вращения ротора низкого давления так и ротора высокого давления. Далее для ясности под частотой вращения ротора ТК будем понимать частоту вращения ротора ВД.

Порог срабатывания компаратора 6 по частоте вращения ротора ТК выбирается таким образом, чтобы в земных условиях при срабатывании компаратора достигался близкий к критическому перепад давлений на турбине, что необходимо для работы регулятора степени расширения газов на турбинах с заданной точностью и быстродействием.

Порог срабатывания компаратора 14 выбирается равным положению РУД, соответствующему минимальному форсированному режиму работы ГТД.

Задатчик 10 расхода в форсажную камеру может реализовывать следующие известные зависимости:

осн=f(αРУД, Твх, Рк)*0,9,

пуск=f(αРУД, Твх, Рк)*0,1;

где Gтпуск - расход топлива в пусковой коллектор ФКС, a Gтосн - расход топлива в основные коллекторы ФКС;

αРУД - угол установки РУД;

Твх - температура воздуха на входе в двигатель;

Рк - давление воздуха за компрессором.

Система работает следующим образом.

При РУД, установленном на площадку малого газа (МГ), регуляторы основного контура (в системе не показаны) поддерживают частоту вращения ротора ТК равной режиму МГ.

При этом частота вращения ротора ТК, измеряемая датчиком 5, ниже порога срабатывания компаратора 6 и на выходе компаратора формируется сигнал равный нулю, при котором переключатель 3 подключает к своему выходу второй вход, и регулятор 2, формирует управляющее воздействие на привод 4 гидроцилиндров створок PC для поддержания заданной площади. Фактическая площадь критического сечения PC измеряется датчиком 9.

В соответствии с нулевым сигналом компаратора 6 ключ 11 разомкнут.

Положением РУД задан бесфорсажный режим работы ГТД, поэтому задатчик 10 форсажного топлива формирует на своих выходах нулевые значения расходов топлива в пусковой и основные коллекторы ФКС.

ФКС не запущена и датчик 17 горения в ФКС формирует сигнал равный нулю, ключ 15 замкнут и включением агрегата 16 зажигания ФКС управляет сигнал компаратора 14.

На выходе компаратора 14 формируется сигнал равный нулю, т.к. положение РУД, измеряемое датчиком 12, ниже порога срабатывания компаратора, при этом уставка регулятора 2 площади критического сечения реактивного устанавливается, например, на уставку Fкр=Fкрмин для обеспечения максимальной тяги двигателя, агрегат 16 зажигания ФКС выключен.

При переводе РУД в форсажную область, например, на режим полного форсирования в первый момент времени срабатывает компаратор 14, и

- регулятор 2 перестраивает свою уставку на, например, Fкр=Fкрмин+10% для обеспечения необходимых запасов газодинамической устойчивости (ГДУ) ГТД и оптимальных условий запуска ФК,

- начинается дозирование топлива в пусковой коллектор ФКС в соответствии с заданным значением, формируемым задатчиком 13,

- включается агрегат 16 зажигания ФКС.

После успешного запуска ФКС, датчик 17 горения в ФКС, формирует на своем выходе сигнал равный 1, ключ 15 размыкается и агрегат 16 зажигания ФК отключается.

Регуляторы основного контура увеличивают расход топлива в основную камеру сгорания для вывода ГТД на заданный РУД режим работы.

До тех пор, пока ротор ТК не успел раскрутиться, частота вращения ротора ниже порога срабатывания компаратора 6, и на выходе компаратора формируется сигнал равный 0, ключ 11 разомкнут и дозирование топлива в основные коллекторы ФКС заблокировано. Переключатель 3 не меняет своего состояния, и регулятор 2 площади критического сечения PC поддерживает заданную площадь критического сечения PC.

По мере раскрутки ротора ТК частота вращения ротора превышает порог срабатывания компаратора 6, на выходе компаратора формируется сигнал равный 1, что приводит к:

- замыканию ключа 11 и снятию блокировки дозирования топлива в основные коллекторы ФКС, начинается дозирование топлива в соответствии с заданным значением, формируемым задатчиком 10,

- подключению к выходу переключателя 3 его первого входа, таким образом, к приводу гидроцилиндров створок PC подключается регулятор 1 степени расширения газов на турбине.

Регулятор 1 степени газов на турбине поддерживает заданную степень расширения газов на турбине. Фактическая степень расширения газов на турбине вычисляется делителем 7 по сигналам датчика 18 давления воздуха за компрессором и датчика 8 давления газа за турбиной.

Таким образом, до достижения условий устойчивой работы регулятора степени расширения газов поддерживается площадь критического сечения PC, обеспечивающая оптимальные условия запуска ФКС и запасы ГДУ двигателя, что позволяет запустить ФКС на дроссельных режимах работы ГТД вплоть до режима малого газа и снизить время полной приемистости двигателя.

Способ управления газотурбинным двигателем с форсажной камерой сгорания, включающий управление расходом топлива в форсажную камеру сгорания по измеренным температуре воздуха на входе в двигатель, давлению воздуха за компрессором, положению рычага управления двигателем, управление гидроцилиндрами привода створок реактивного сопла по измеренным перепаду давлений газа на турбине двигателя, отличающийся тем, что формируют заданное значение пускового расхода топлива в форсажную камеру сгорания по измеренным давлению воздуха за компрессором и температуре воздуха на входе в двигатель, подают в форсажную камеру сгорания пусковой расход форсажного топлива, включают агрегат зажигания форсажной камеры сгорания, контролируют розжиг форсажной камеры сгорания, дополнительно измеряют частоту вращения ротора турбокомпрессора, до достижения частоты вращения ротора турбокомпрессора заранее выбранного значения и поддерживают постоянное положение гидроцилиндров привода створок реактивного сопла, при котором обеспечивается заранее выбранное значение площади критического сечения реактивного сопла, и блокируют подачу топлива в основные коллекторы форсажной камеры сгорания.
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ
Источник поступления информации: Роспатент

Показаны записи 71-71 из 71.
16.06.2023
№223.018.7d3e

Способ снижения вибронапряжений в рабочих лопатках турбомашины

Изобретение предназначено для использования в турбомашиностроении и может найти широкое применение для снижения вибронапряжений в лопатках рабочих колес турбомашин. Проводят тензометрирование лопаток отдельного рабочего колеса турбомашины. Определяют наиболее опасную резонансную частоту...
Тип: Изобретение
Номер охранного документа: 0002746365
Дата охранного документа: 12.04.2021
Показаны записи 11-20 из 20.
11.03.2019
№219.016.d8be

Способ управления подачей топлива в форсажную камеру газотурбинного двигателя

Изобретение относится к системам автоматического регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам управления подачей топлива в форсажную камеру ГТД, и может найти применение в авиадвигателестроении. Способ управления подачей топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002315883
Дата охранного документа: 27.01.2008
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
09.06.2019
№219.017.7c83

Система управления соплом с регулируемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к системам автоматического управления авиационных газотурбинных двигателей (ГТД), в частности к системам управления соплом с регулируемым вектором тяги. Технический результат - повышение надежности системы путем введения средств обеспечения перевода сопла в осесимметричное...
Тип: Изобретение
Номер охранного документа: 0002326258
Дата охранного документа: 10.06.2008
09.08.2019
№219.017.bd20

Способ управления двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами компрессора и вентилятора

Изобретение относится к авиадвигателестроению, а именно к управлению двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами. Способ управления двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами компрессора и вентилятора включает управление...
Тип: Изобретение
Номер охранного документа: 0002696516
Дата охранного документа: 02.08.2019
13.11.2019
№219.017.e11c

Система управления расходом топлива в газотурбинный двигатель

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления авиационными ГТД для регулирования расхода топлива в КС. Техническим результатом настоящего изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002705694
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e445

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС). Способ управления газотурбинным двигателем с форсажной...
Тип: Изобретение
Номер охранного документа: 0002706518
Дата охранного документа: 19.11.2019
17.01.2020
№220.017.f6f2

Система управления положением направляющих аппаратов компрессора газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для регулирования положения направляющих аппаратов компрессора газотурбинного двигателя (ГТД). Техническим результатом настоящего изобретения является разработка системы управления положением...
Тип: Изобретение
Номер охранного документа: 0002711187
Дата охранного документа: 15.01.2020
25.04.2020
№220.018.18b8

Способ управления газотурбинным двигателем с форсажной камерой сгорания

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС). Техническим результатом настоящего изобретения является...
Тип: Изобретение
Номер охранного документа: 0002720059
Дата охранного документа: 23.04.2020
03.06.2023
№223.018.766f

Способ управления расходом топлива в камеру сгорания на запуске газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей (ГТД), преимущественно авиационных, и может быть использовано для управления подачей топлива в ГТД на режиме запуска. Предлагается способ управления расходом топлива в камеру сгорания на запуске газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002796562
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c05

Способ диагностики технического состояния газотурбинного двигателя

Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей. Способ диагностики технического состояния газотурбинного двигателя, заключающийся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на...
Тип: Изобретение
Номер охранного документа: 0002745820
Дата охранного документа: 01.04.2021
+ добавить свой РИД