×
08.11.2019
219.017.df86

Результат интеллектуальной деятельности: Способ получения дорожного битума

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения дорожного битума и может быть использовано в нефтеперерабатывающей и строительной промышленностях, в частности при строительстве дорог. Способ осуществляют путем окисления нефтяного сырья кислородом воздуха при повышенной температуре при подаче воздуха через перфорированные трубы, расположенные внутри слоя сырья, где продукт и подаваемый воздух подвергают обработке. При этом обработку осуществляют путем ультразвукового воздействия колебаниями с частотой 18-68 кГц. Технический результат заключается в сокращении расхода воздуха во времени на единицу массы битумного сырья. 1 ил., 1 табл., 7 пр.

Изобретение относится к способам получения дорожного битума окислением нефтяного сырья кислородом воздуха и может быть использовано в нефтеперерабатывающей и строительной промышленностях, в частности, при строительстве дорог.

Известен способ получения битума окислением нефтяного сырья воздухом в барботажном аппарате при 240-300°С, предпочтительно при 260-280°С, путем подачи воздуха через диспергатор с отверстиями в окисляемое сырье, в котором воздух, выходящий в виде пузырей из отверстий диспергатора, пропускают через пластину с отверстиями, размер которых меньше размера отверстий диспергатора (см. патент РФ №2266945, МПК С10С 3/04, 2005).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относится то, что в известном способе требуется высокая температура (240-300°С), которая способствует процессу образования и отложения кокса на отверстиях барботера и препятствует эффективному использованию кислорода из воздуха, подаваемого на окисление (см., например, Р.Б. Гун, "Нефтяные битумы", М.: Химия, 1973, с. 105).

Известен способ получения битумов из нефтяного сырья в окислительной колонне, включающий предварительное окисление исходного сырья воздухом в выносном диспергирующем устройстве с последующим окислением газожидкостной смеси в трубопроводе и доокислением в окислительной колонне, вывод реакционной массы на сепарацию и подачу рециркулята в окислительную колонну. Предварительное окисление исходного сырья в выносном диспергирующем устройстве проводят при температуре окисления, соответствующей температуре окисления в колонне (275°С), а в диспергирующее устройство - диспергатор, работающий в пленочном режиме, подают весь объем необходимого для окисления воздуха, при этом в качестве рециркулята в окислительную колонну подают окисленный битум, охлажденный до температуры 160-200°С (см. патент РФ №2400520, МПК С10С 3/04, 2010).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относится то, что в известном способе используют дополнительное устройство - выносной диспергатор, работающий в пленочном режиме, в который подают весь объем необходимого для окисления воздуха, а затем, не достигая качественных показателей товарных битумов по причине низкой эффективности пленочного режима окисления, доокисляют сырье в колонне при повышенной температуре в 275°С, что увеличивает энергозатраты, при этом не снижают расход воздуха.

Известен способ, включающий разделение исходного сырья на два потока. Нагревание одного потока сырья и его окисление в реакторе, компаундирование окисленного и не окисленного потоков с получением продукта. При этом воздух, подаваемый в реактор, диспергируют, окисление части потока сырья производят в гидродинамическом режиме стесненного всплывания пузырьков воздуха (см. патент РФ №2562483, МПК С10С 3/04, 2015).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа относится то, что в известном способе сокращают расход воздуха только на 19.2%.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ получения битума путем окисления нефтяного сырья кислородом воздуха в колонне окисления при повышенной температуре, при подаче воздуха через перфорированные трубы, расположенные внутри колонны, в слой сырья, где продукт низа колонны и дополнительно подаваемый воздух подвергают дополнительной обработке в диспергирующем аппарате, создающем в образующейся газожидкостной смеси избыточное давление 1-3 кг/см3 с частотой динамических пульсаций потока 400-3000 Гц внутри диспергирующего аппарата с последующим возвратом продукта обработки в колонну окисления (см. патент РФ №2167183, МПК С10С 3/04, 2001), принят за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в примерах реализации известного способа расход воздуха составляет не менее 83 м3 на тонну битумного сырья, что практически не ниже стандартного расхода воздуха в заводских условиях (см., например, И.Б. Грудников, "Производство нефтяных битумов", "Химия", 1983, с. 48-61). При этом подвергают обработке динамическими пульсациями в аппарате только от 20 до 50% массы сырья совместно с частью общего объема воздуха и используют при обработке динамическими пульсациями в аппарате не более 50% от общего объема воздуха, идущего на окисление. Кроме того, для получения эффекта динамических пульсаций потока требуется избыточное давление воздуха в 1-3 кг/см2 при ограничении верхней частоты колебаний в 3000 Гц. Другим недостатком способа является отсутствие возможности снижения количества побочного продукта производства окисленного нефтяного битума - черного соляра, за счет предотвращения уноса битумопродуктов из окислительного реактора избыточным потоком воздуха.

В нефтеперерабатывающей промышленности доля различных марок битумов предназначенных для дорожного строительства составляет не менее 75% от общего производства всех битумопродуктов. Именно к качественным показателям дорожных битумов предъявляются наиболее строгие требования по ГОСТ 33133-2014 «Дороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Технические требования» и международным стандартам.

Проблема при получении дорожных битумов заключается в том, что возникла необходимость снижения образования побочных продуктов и выбросов загрязняющих веществ в атмосферу в процессе их производства, за счет снижения расхода воздуха и предотвращения уноса битумопродуктов из окислительного реактора избыточным потоком воздуха, а так же сокращения общих энергозатрат, за счет снижения температуры процесса окисления и применения ультразвуковой активации процесса окисления с высоким коэффициентом полезного действия (к.п.д.).

Технический результат - сокращение расхода воздуха во времени на единицу массы битумного сырья, за счет ультразвуковой активации процесса окисления битумного сырья.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе получения дорожного битума путем окисления нефтяного сырья кислородом воздуха при повышенной температуре, при подаче воздуха через перфорированные трубы, расположенные внутри слоя сырья, в котором продукт и подаваемый воздух подвергают обработке особенность заключается в том, что обработку осуществляют путем ультразвукового воздействия колебаниями с частотой 18-68 кГц.

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата получены в ходе апробации способа получения дорожного битума и экспериментов на опытной лабораторной установке ультразвуковой активации (см. фиг. 1), позволяющей моделировать процесс окисления нефтяного битумного сырья по температуре и расходу воздуха в широких пределах.

Способ получения дорожного битума осуществляют следующим образом.

Битумное сырье, полученное из смеси западно-сибирских нефтей и практически точно совпадающее по характеристикам с образцом №2 прототипа, при температуре 200-240°С, преимущественно 225°С, обрабатывают ультразвуком в реакторе опытной лабораторной установки ультразвуковой активации, представляющем собой цилиндрический стальной реактор с фланцами, снабженный волноводом ультразвуковых колебаний, который расположен на оси реактора и соединен с внешним пьезокерамическим преобразователем. Электропитание пьезокерамического преобразователя осуществляют от управляемого блока питания, генерирующего переменный ток с частотой 18-68 кГц. В зависимости от акустических свойств среды, в которой находится волновод, блок питания автоматически настраивает резонансную частоту в диапазоне 18-68 кГц, преимущественно 21 кГц, для достижения максимальной амплитуды акустических колебаний, вызывающих интенсивное кавитационное воздействие на смесь, увеличивающее степень диспергирование пузырьков воздуха в битумном сырье. Подачу воздуха осуществляли через кольцевой барботер диаметром около 85% от внутреннего диаметра цилиндрической части реактора, имеющий 12 отверстий диаметром 1 мм с нижней стороны и расположенный в придонной части реактора. Время обработки было подобрано экспериментально, в соответствии с параметрами лабораторной установки и данными прототипа. Загрузка битумного сырья составляла 1.6-2.6 кг. Данные о режиме обработки и свойствах продуктов указаны в таблице. Сравнение результатов полученных при экспериментальной апробации предлагаемого способа и прототипа корректно, т.к. скорость движения битумного сырья в заполняемой колонне значительно меньше скорости всплытия пузырьков воздуха, что соответствует режиму всплытия пузырьков воздуха в реакторе опытной лабораторной установки ультразвуковой активации.

Предлагаемое техническое решение проиллюстрировано примерами (таблица), где представлены данные о режиме обработки и свойствах продуктов.

Данные таблицы свидетельствуют о том, что оптимальные технологические режимы ультразвуковой активации испытанного сырья (примеры 1-5) обеспечивают повышение пластичности битумов (за счет увеличения глубины проникания иглы при 25°С и 0°С, растяжимости при 25°С, расширение температурного интервала работоспособности (за счет снижения температуры хрупкости при равных температурах размягчения). Полученные образцы обладают высокой устойчивостью к старению, о чем свидетельствует повышение значений глубины проникания иглы после прогрева, а также низкое изменение температуры размягчения после старения, нормируемое в новых технических требованиях ГОСТ 33133-2014 и предъявляющих повышенные требования к данному показателю (не более 7°С).

Примеры 6-7 получены в неоптимальных условиях. Снижение частоты пульсаций до 17 кГц (пример 6) приводит к повышению расхода воздуха до 40 нм3/т, что приводит к повышению удельных энергозатрат на производство. Снижение интенсивности реакции окисления, характеризуемой пониженной температурой размягчения, приводит к уменьшению растяжимости при 25°С, а повышенный расход воздуха способствует ухудшению термостабильности битума, характеризуемой увеличением изменения температуры размягчения после старения. Напротив, повышение частоты пульсаций до 69 кГц (пример 7) приводит к повышению скорости реакции окисления, росту температуры размягчения, что в свою очередь приводит к снижению глубины проникания иглы при 25°С и 0°С до 45 и 17 дмм соответственно, снижению растяжимости при 25°С, повышению температуры хрупкости и снижению устойчивости к старению битума.

Экспериментальные данные говорят о том, что в условиях ультразвукового воздействия возможно получать товарные дорожные битумы используя от 20% общего объема воздуха, который требуется на окисление единицы массы битумного сырья в заводских условиях.

Образование черного соляра при производстве битума связано с деструктивными химическими процессами окисления компонентов битума, испарением остаточных легкокипящих компонентов и, в основном, с уносом битумопродуктов из окислительного реактора избыточным потоком воздуха. Сокращение расхода воздуха до 80% позволяет практически предотвратить унос битумного материала с брызгами и существенно снизить пенообразование. Получаемый в условиях ультразвукового воздействия черный соляр, значительно отличается от стандартного по фракционному составу и может быть возвращен в сырьевой оборот нефтеперерабатывающих предприятий в качестве компонента сырья гидроочистки дизельных фракций.

Таким образом, преимущество предлагаемого способа получения преимущественно дорожного битума состоит в сокращении расхода воздуха, в сравнении с классической технологией, не менее чем на 80%, что позволяет снизить количество побочного продукта окисления - черного соляра, при этом уменьшив производственные потери.

С учетом актуальных промышленных объемов получения дорожных битумов можно предполагать получение значительного экономического эффекта от внедрения предлагаемого изобретения.

Способ получения дорожного битума путем окисления нефтяного сырья кислородом воздуха при повышенной температуре при подаче воздуха через перфорированные трубы, расположенные внутри слоя сырья, в котором продукт и подаваемый воздух подвергают обработке, отличающийся тем, что обработку осуществляют путем ультразвукового воздействия колебаниями с частотой 18-68 кГц.
Способ получения дорожного битума
Источник поступления информации: Роспатент

Показаны записи 41-50 из 191.
10.05.2018
№218.016.47c1

Способ оценки огнестойкости балочной конструкции

Изобретение относится к области пожарной безопасности зданий и сооружений. Предложен способ оценки огнестойкости стальной гофрированной стенки, растянутого и сжатого железобетонных поясов составной балки здания без нарушения ее пригодности по комплексу единичных показателей качества. Для...
Тип: Изобретение
Номер охранного документа: 0002650704
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.481f

Вихревой пылеуловитель

Изобретение относится к устройствам мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов, главным образом, от мелкодисперсных частиц и частиц субмикронных размеров. Вихревой пылеуловитель содержит...
Тип: Изобретение
Номер охранного документа: 0002650999
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4b8c

Конструкция огнезащищённой стальной балки

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано при изготовлении огнезащищенной стальной балки с гофрированной стенкой. Техническим результатом изобретения является совершенствование конструкции огнезащиты стальной балки с гофрированной...
Тип: Изобретение
Номер охранного документа: 0002651997
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4bb2

Шумозащитный экран

Изобретение относится к устройствам для защиты от шума, в частности к шумозащитным экранам. Шумозашитный экран содержит основание и закрепленный на нем каркас со встроенными в него задней стенкой и уложенными друг на друга плитами. Плиты выполнены из материалов с различными свойствами...
Тип: Изобретение
Номер охранного документа: 0002651965
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4c04

Способ изготовления шумозащитного экрана

Изобретение относится к способу изготовления устройства для защиты от шума, в частности шумозащитного экрана. Закрепления на основании экрана каркаса со встроенными в него задней стенкой и уложенных друг на друга плит, выполненных из материалов с различными свойствами шумопоглощения. Поверх...
Тип: Изобретение
Номер охранного документа: 0002651966
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4c17

Способ производства двойных съедобных пленок из яблочного сырья

Изобретение относится к пищевой промышленности, преимущественно к двойным съедобным пленкам, получаемым путем переработки яблочного сырья. Способ производства двойных съедобных пленок из яблочного сырья характеризуется тем, что у яблок удаляют несъедобные части, обрабатывают водяным паром в...
Тип: Изобретение
Номер охранного документа: 0002652162
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4c99

Способ получения производных хроман-2-аминов

Изобретение относится к новому способу получения 3-аминозамещенных 2,3-дигидро-1Н-бензо[f]хроменов и 2-аминозамещенных хроманов конденсацией трифторацетилхроменов и вторичных циклических аминов в мольном соотношении 1:2 в метанольном растворе при комнатной температуре. Эти соединения являются...
Тип: Изобретение
Номер охранного документа: 0002652119
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4eba

Стартер-генератор

Изобретение относится к области электротехники и может быть использовано в автономных объектах, в частности автомобилях для генерирования электрической энергии и запуска двигателей внутреннего сгорания. Техническим результатом является повышение надежности, ресурса безотказной работы...
Тип: Изобретение
Номер охранного документа: 0002650889
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.56c9

Устройство для удаления конденсата из дымохода многоквартирного дома

Изобретение относится к устройству для удаления конденсата из дымохода многоквартирного дома. Технический результат - повышение эффективности удаления конденсата из дымовых труб и дымовых газов, повышение долговечности дымовой трубы, уменьшение трудозатрат при обслуживании дымоходов...
Тип: Изобретение
Номер охранного документа: 0002655063
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.56ca

Способ удаления конденсата из дымохода многоквартирного дома

Изобретение относится к теплоэнергетике и может быть использовано для отведения конденсата из трубы коллективного дымохода. Технический результат - повышение эффективности удаления конденсата из дымовых труб и дымовых газов, повышение долговечности дымовой трубы, уменьшение трудозатрат при...
Тип: Изобретение
Номер охранного документа: 0002655062
Дата охранного документа: 23.05.2018
Показаны записи 41-41 из 41.
23.05.2023
№223.018.6da9

Полимерно-битумное вяжущее с повышенной устойчивостью к сдвиговым деформациям и способ его получения

Изобретение относится к полимерно-битумному вяжущему, которое может использоваться в качестве вяжущего материала при строительстве, ремонте и реконструкции покрытий и оснований дорог, мостов, аэродромов и других строительных объектов. Заявленное полимерно-битумное вяжущее содержит битум,...
Тип: Изобретение
Номер охранного документа: 0002765646
Дата охранного документа: 01.02.2022
+ добавить свой РИД