×
08.11.2019
219.017.df51

Результат интеллектуальной деятельности: Способ изготовления анизотропных гексагональных ферритов типа М

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок. При прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц. Величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%. Изобретение позволяет получать гексагональные поликристаллические ферриты бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля. 2 ил.

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры.

Известны способы получения поликристаллических гексагональных ферритов бария и стронция, включающие смешивание оксида бария (оксида стронция) с оксидом железа в соответствующих пропорциях, сухой и мокрый помол, ферритизацию порошка, прессование заготовок из измельченной шихты и спекание (см. Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. - М.: МИСиС, 2005. - 352 с.). Указанные способы не позволяют изготовлять анизотропные гексаферриты бария и стронция.

Наиболее близким к предложенному техническому решению является «Способ изготовления анизотропного стронциевого феррита» (см. Андреев В.Г., Гончар А.В., Летюк Л.М., Меньшова С.Б. и Егоров Р.Н. Патент РФ №2256534. Опубликовано 20.07.2005 г. Бюл. №20). Однако указанный способ требует высоких магнитных полей и не всегда позволяет получить требуемое значение степени магнитной текстуры.

Техническим результатом изобретения являлось получение гексагональных поликристаллических ферритов бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля.

Технический результат достигается следующим образом.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ.

Изобретение поясняется фигурами, где фиг. 1 - фотографии порошка гексаферрита бария, полученного методом химического соосаждения при различных увеличениях, и фиг. 2 - фотографии порошка гексаферрита стронция, полученного методом химического соосаждения при различных увеличениях.

Сущность изобретения состоит в следующем. Метод химического соосаждения позволяет получить порошок гексаферрита в виде наночастиц размером 60-140 нм. При прессовании заготовки в магнитном поле частицы гексаферрита, имея вид пластинок в виде гексагонов, ориентируются в магнитном поле, создавая таким образом магнитную текстуру в образце. Наноразмерные частицы для полной ориентации в магнитном поле требуют существенно меньшие значения магнитного поля.

Изобретение реализуется следующим образом.

Из порошков гексаферритов прессовали сырые заготовки с формами шайб диаметром 10 мм и толщиной 3,0 мм. Давление прессования составляло 8 МПа. Благодаря технологии химического соосаждения полученные наночастицы требуют меньшие значения магнитного поля, поэтому намагничивающее поле в конце прессования составляет 6-7 кЭ, а не 10 кЭ и выше, как при классической технологии. Дополнительное воздействие на порошок ультразвуком в ходе прессования в постоянном магнитном поле обеспечивает повышение степени ориентации частиц гексаферрита. При интенсивных колебаниях наноразмерных частиц 60-140 нм в интервале частот 0,5-2,0 МГц снижается межчастичное взаимодействие. После прессования сырые заготовки сушились в естественных условиях, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Степень магнитной текстуры образцов оценивалась по формуле:

где: D - степень магнитной текстуры в процентах; и Br// - остаточная магнитная индукция поперек и вдоль оси текстуры соответственно.

Частотный диапазон ультразвука используемого ультразвука выбран, исходя из следующих соображений. При использовании частоты ультразвука меньше 0,5 МГц получаемые образцы обладают пониженными значениями магнитных параметров. При использовании ультразвука с частотой больше 2,0 МГц падает степень магнитной текстуры полученных образцов.

Пример 1. Порошок бариевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Костишин В.Г., Тимофеев А.В., Читанов Д.Н. Особенности получения наноразмерных порошков гексаферритов бария BaFe12O19 методом прекурсора в полимере. Химическая технология, 2018, №1. - С. 11-15.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Кожитов Л.В., Козлов В.В. Способ получения наноразмерных частиц гексаферрита бария. Патент РФ №2611442. Опубликовано 22.02.2017 г. Бюллетень №6).

Для порошка бариевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 1).

На основе имеющегося порошка BaFe12O19 была спрессована сырая заготовка. Она имела форму шайбы диаметром 10 мм и толщиной 3,0 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,7 кЭ с дополнительным воздействием ультразвука частотой 0,5 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 1, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов удается достичь магнитной текстуры ~ 91%, что на 22% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Пример 2. Порошок стронциевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Kostishyn V.G., Timofeev A.V., Chitanov D.N. Obtaining of nanostructured powders of barium and strontium hexaferrite by the polymer precursor method. Journal of Nano-and Electronic Physics, 2015, vol. 7, Issue 4. - P. 04066.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Панина Л.В. Способ получения наноразмерных частиц гексаферрита стронция. Патент РФ №2612289. Опубликовано 06.03.2017 г. Бюллетень №7).

Для порошка стронциевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 2).

Порошок SrFe12O19 был спрессован в сырую заготовку. Она представляла собой шайбу диаметром 10 мм и толщиной 3 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,5 кЭ с дополнительным воздействием ультразвука частотой 1,1 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 2, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов стронция удается достичь магнитной текстуры ~ 89%, что на 23% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%.
Способ изготовления анизотропных гексагональных ферритов типа М
Способ изготовления анизотропных гексагональных ферритов типа М
Способ изготовления анизотропных гексагональных ферритов типа М
Источник поступления информации: Роспатент

Показаны записи 241-250 из 322.
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
14.05.2019
№219.017.5183

Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов. Сферичные...
Тип: Изобретение
Номер охранного документа: 0002687352
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.518b

Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента

Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента. Крупнозернистые узкофракционные порошки WC с зернистостью 5-20 мкм смешивают без размола...
Тип: Изобретение
Номер охранного документа: 0002687355
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5225

Устройство для адаптивного временного профилирования ультракоротких лазерных импульсов

Изобретение относится к области лазерной техники и касается устройства для адаптивного временного профилирования ультракоротких лазерных импульсов. Устройство включает в себя лазерный задающий осциллятор, стретчер, обеспечивающий чирпирование лазерного импульса, акустооптическую дисперсионную...
Тип: Изобретение
Номер охранного документа: 0002687513
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5376

Сверло для получения отверстий с задней подрезкой

Изобретение относится к сверлу для изготовления отверстия с задней подрезкой, в частности в облицовочных панелях из керамики, камня, бетона и других хрупких материалов, которые крепятся на фасадах здания с помощью расширяемого анкера. В сверле, содержащем закрепленную на хвостовике со смещением...
Тип: Изобретение
Номер охранного документа: 0002687589
Дата охранного документа: 15.05.2019
24.05.2019
№219.017.5e02

Бесконтактный датчик микрорельефа

Изобретение может использоваться для выявления и измерения микрорельефа поверхности из металлов и диэлектриков, а также с целями дефектоскопии поверхности и обнаружения неоднородности приповерхностных слоев. Бесконтактный датчик микрорельефа состоит из одного или нескольких микроволновых...
Тип: Изобретение
Номер охранного документа: 0002688902
Дата охранного документа: 22.05.2019
30.05.2019
№219.017.6b6d

Способ получения модифицированных кристаллов магнетита

Изобретение относится к способу получения модифицированных кристаллов магнетита (FeO), содержащих на поверхности смесь липидов, и может быть использовано в фармацевтической промышленности. Предложенный способ получения модифицированных кристаллов магнетита включает смешение 138 мас.ч....
Тип: Изобретение
Номер охранного документа: 0002689392
Дата охранного документа: 28.05.2019
15.06.2019
№219.017.8340

Литейный алюминиевый сплав с добавкой церия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691475
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.8374

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691476
Дата охранного документа: 14.06.2019
Показаны записи 41-50 из 50.
08.07.2018
№218.016.6e1b

Способ получения поликристаллических ферритов-гранатов

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим...
Тип: Изобретение
Номер охранного документа: 0002660493
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7f92

Способ получения ферритовых изделий

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и...
Тип: Изобретение
Номер охранного документа: 0002664745
Дата охранного документа: 22.08.2018
28.08.2018
№218.016.7fec

Способ изготовления фильтров для ик-диапазона

Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и...
Тип: Изобретение
Номер охранного документа: 0002664912
Дата охранного документа: 23.08.2018
20.02.2019
№219.016.c09b

Диск из алмазосодержащего материала для обработки материалов электронной техники и изделий из них

Изобретение относится к электронной технике, а именно к механической обработке материалов электронной техники и изделий из них, в том числе полупроводниковых и ферритовых материалов. Технический результат изобретения - повышение выхода годных путем повышения качества обработки, а именно...
Тип: Изобретение
Номер охранного документа: 0002308118
Дата охранного документа: 10.10.2007
20.03.2019
№219.016.e7bd

Способ изготовления изделий из ферритового материала для интегральных устройств свч

Изобретение относится к области электротехники, в частности к способу изготовления изделий из ферритового материала на основе параметрического ряда литиевой феррошпинели для интегральных устройств СВЧ. Способ включает приготовление шихты на основе оксидов упомянутого ферритового материала и...
Тип: Изобретение
Номер охранного документа: 0002420821
Дата охранного документа: 10.06.2011
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
29.05.2019
№219.017.681a

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов для повышения безопасности и сокращения сроков и стоимости летного обучения и летной отработки управляемости самолетов...
Тип: Изобретение
Номер охранного документа: 0002471151
Дата охранного документа: 27.12.2012
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
12.04.2023
№223.018.47e4

Способ возведения опорного основания дорожной одежды

Изобретение относится к области дорожного строительства и может быть использовано при новом строительстве или проведении ремонта автомобильных дорог, взлетно-посадочных полос аэродромов, вертолетных и иных площадок в условиях слабых грунтов на заболоченных территориях, а также на подвижных...
Тип: Изобретение
Номер охранного документа: 0002747181
Дата охранного документа: 28.04.2021
+ добавить свой РИД