×
02.11.2019
219.017.ddd6

Результат интеллектуальной деятельности: Способ проращивания семян сельскохозяйственных культур

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сельского хозяйства. Способ включает воздействие магнитного поля. Подготавливают подложку из нейтральных материалов, на которую помещают гигроскопический нецеллюлозный материал с водой, на поверхность которого насыпают порошок из минерала шунгита. Поверх шунгита помещают предварительно стерилизованные семена, которые подвергают воздействию постоянного магнитного поля с магнитной индукцией 30 мТл при непрерывном освещении люминесцентными светильниками. Дополнительно подготавливают подложки, которые устанавливают на разных уровнях относительно создающих постоянное магнитное поле полюсов магнитов. Способ позволяет уменьшить сроки прорастания семян и увеличить процент выхода пригодных к посадке проростков. 1 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к области сельского хозяйства, преимущественно к способам и устройствам для проращивания семян, корней и т.п. перед посевом или посадкой проростков.

Способы стимуляции проращивания сельскохозяйственных культур традиционно включают, в частности, их замачивание и проращивание во влажном состоянии.

Описаны различные способы стимуляции проращивания, в том числе физические (с помощью нагревания и охлаждения), химические (с помощью химреагентов), физико-химические (с помощью обработки в электрических и магнитных полях и др.)

Запатентован способ стимуляции проращивания семян, который включает их замачивание в течение 3-х часов в католите электрохимически активированного водного раствора 0,5 г/л KCl с pH 11,6, ОВП - 900 мВ [RU 2553238]. Способ позволяет упростить и ускорить технологию проращивания семян сельскохозяйственных культур.

Недостатки способа - долгая подготовка раствора для проращивания семян. Наиболее приемлемыми способами являются такие, которые не требуют приготовления специальных растворов.

Известен способ [RU 2492625], который включает замачивание семян сельскохозяйственных культур в омагниченной водопроводной воде с последующим проращиванием. При этом семена замачивают в воде, обработанной в магнитном поле магнитной мешалки типа ММ, в емкости из неэлектропроводного материала, например стакане из стекла с магнитным стержнем, при толщине слоя 40 мм. Магнитное поле создается вращающимися постоянными магнитами при скорости вращения 500-600 об./мин в течение 3,5-4-х часов с получением воды с рН 8,3-8,4, ОВП 150-160 мВ, из исходной воды с рН 7,7-8,2, ОВП +200-+215 мВ и общей минерализацией 200-350 мг/л. Параметры магнитной обработки - магнитная напряженность 1,0-1,3 кА/м, магнитная индукция 1,2-1,7 мТ, удельная энергия 800-900 Дж/л. Способ позволяет повысить эффективность обработки семян.

Недостатки способа - необходимость продолжительных манипуляций с водой. Влияние магнитными полями является на сегодняшний день актуальным.

Известен способ предпосевной обработки семян [RU 2652185], включающий воздействие на семена электромагнитным излучением и магнитным полем. При этом воздействие осуществляют последовательно электромагнитным излучением на частоте линии спектра поглощения кислорода 129 ГГц в течение 30 минут и затем переменным магнитным полем с индукцией 25 мТл с частотой 2 Гц в течение от одного часа [прототип]. Способ обеспечивает увеличение эффективности стимуляции всхожести семян.

Недостатки способа - двухэтапность (сначала влияют электромагнитным излучением на частоте линии спектра поглощения кислорода 129 ГГц в течение 30 минут и затем переменным магнитным полем с индукцией 25 мТл с частотой 2 Гц в течение от одного часа), необходимость засекать время обработки, значительные затраты электричества.

Более удобными способами являются одноэтапные, не обязывающие выдерживать временные интервалы.

Задачей заявляемого способа является управление процессом роста и развития семян гороха, сочетанием воздействие постоянного магнитного поля и внесения минерала шунгита в среду проращивания.

Технический результат заключается в уменьшении сроков прорастания семян и увеличения процента выхода пригодных к посадке проростков.

Указанный технический результат достигается тем, что в способе проращивания семян сельскохозяйственных культур подготавливают подложку из нейтральных материалов (пластик, стекло, керамика), кроме дерева (впитывается вода) и металла (так как происходит окисление в воде и взаимодействует с магнитом, что способствует изменению магнитного поля).

На подложку выстилают гигроскопический нецеллюлозный материал, на который наливают воду.

На впитавшую воду поверхность из гигроскопического нецеллюлозного материала насыпают порошок из минерала шунгита, поверх которого выкладывают предварительно стерилизованные семена.

Сверху и снизу от подложки устанавливают магниты с разными полюсами.

Между магнитами возможна установка нескольких рядов подготовленных и засеянных подложек.

На фиг. 1 изображена установка для проращивания семян, где:

1. Люминесцентные светильники;

2. Магниты;

3. Семена;

4. Подложка;

5. Гигроскопический нецеллюлозный материал;

6. Дистиллированная вода;

7. шунгит.

Для примера конкретной реализации был использован горох посевной (Pisum sativum L.) сорт «Альбумен». Экспериментальная установка - магниты 2 с прикрепленными на них стальными пластинами в форме дисков диаметром 9 см, которые расположены на концах металлических дугообразных направляющих. Магнитная индукция поля 30 мТл. Установку располагают на деревянной полке на металлическом стеллаже, оснащенном люминесцентными светильниками 1 марки Т8 OSRAM L36 W/77 FLUORA G13 и длиной 1200 мм (1400 lm). Освещали непрерывно. Семена гороха проращивали методом водной культуры. Перед проращиванием проводили стерилизацию семян гороха: 5 минут выдерживали в мыльной воде, постоянно перемешивая. Три раза промывали дистиллированной водой, После сливания воды семена заливали 50 мл 3% перекиси водорода и перемешивали 5 минут, затем раствор сливали. В качестве подложки 4 использовали чашку Петри, в крышку которой наливали дистиллированную воду (чтобы не было воздействия примесей, присутствующих в обычной воде) и помещали в эту крышку чашку меньшего диаметра, на дно которой помещали универсальное полотенце из материала спанлейс марки «Эконом smart» размером 20×23 см, при этом края салфетки подворачивали так, что концы салфетки были опущены в воду в чашку большего диаметра. На салфетку равномерно насыпали 2 г шунгитового порошка марки "Петрошунгит". Семена выкладывали в чашку Петри диаметром 9 см по 50 горошин на шунгит. Чашки Петри с семенами гороха помещали между стальными пластинами магнитной установки. Проращивали при комнатной температуре.

Результаты оценивали посредством ежедневного подсчета проросших (жизнеспособных) семян, а также измерением длины корней на 5 день проращивания.

При этом чашки Петри располагались в установке уровнями (верхним и нижним). Верхняя уровень из чашек ближе к южному полюсу, нижний уровень из чашек ближе к северному полюсу. Исследования показали, что использование шунгита и воздействие магнитного поля (особенно у южного полюса) повышали уровень прорастания семян гороха по сравнению с другими вариантами, которые изображены на фиг. 2, где на фиг. 2А изображены графики зависимости уровня прорастания жизнеспособных семян от времени проращивания на подложке, расположенной вблизи южного полюса постоянного магнитного поля (ПМП) (верхний уровень), а на фиг. 2Б изображены графики зависимости уровня прорастания жизнеспособных семян от времени проращивания на подложке, расположенной вблизи северного полюса (нижний уровень). Эти графики были построены при разных условиях проведения эксперимента, а именно:

синим пунктиром изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 только с водой 6 (контроль);

сиреневой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 только с водой 6, но помещенной в постоянное магнитное поле (ПМП), создаваемое магнитными полюсами 2;

фиолетовой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из минерала шунгита 7;

голубой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из графита;

оранжевой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из активированного угля;

зеленой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из минерала шунгита 7, помещенной в постоянное магнитное поле (ПМП), создаваемое магнитными полюсами 2.

Из этих графиков видно, что наименьшее время прорастания семян и наибольший процент (~ 98%) выхода жизнеспособных семян наблюдается при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из минерала шунгита 7, помещенной в постоянное магнитное поле (ПМП), создаваемое магнитными полюсами 2 (зеленая линия). При этом прорастание семян гороха посевного было интенсивнее в 2,2-2,5 раза по сравнению с контролем.

Для оценки влияния шунгита, внесенного в чашку Петри, на ростовые характеристики гороха, проводили морфометрический анализ, а именно измерение корней на 5-е сутки. В условиях комбинированного воздействия ПМП и шунгита, а также при добавлении только шунгита корни гороха были на 49-67% длиннее, чем в вариантах без добавления шунгита (фиг. 3). Проращивание в ПМП с добавлением шунгита увеличивало длину корней в 3 раза по сравнению с контролем.


Способ проращивания семян сельскохозяйственных культур
Способ проращивания семян сельскохозяйственных культур
Источник поступления информации: Роспатент

Показаны записи 21-30 из 90.
29.12.2017
№217.015.f327

Способ изготовления распыляемой композитной мишени, содержащей фазу сплава гейслера cofesi

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера CoFeSi, которая может быть использована при производстве микроэлектроники. Способ включает механическое смешивание порошков компонентов сплава Гейслера CoFeSi, спекание-прессование полученной...
Тип: Изобретение
Номер охранного документа: 0002637845
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f33c

Способ синтеза сульфат-фосфатов металлов

Изобретение может быть использовано при производстве термомеханически стабильных материалов и изделий на их основе, требующих высокого сопротивления термоудару и устойчивых к резким изменениям температур. Способ синтеза сульфат-фосфатов металлов включает определение максимально допустимого...
Тип: Изобретение
Номер охранного документа: 0002637244
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f33e

Способ обучения биологической нейронной сети (в эксперименте)

Изобретение относится к нейрофизиологии, конкретно к направленному обучению биологической нейронной сети. Способ включает использование микроэлектродной матрицы для выращивания культуры диссоциированных нейрональных клеток, стимуляцию высокочастотными электрическими импульсами двух участков...
Тип: Изобретение
Номер охранного документа: 0002637391
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f600

Способ получения монокристаллического сольвата этанола кортизона ацетата

Изобретение относится к способу получения монокристаллического сольвата этанола кортизона ацетата, включающему растворение кристаллического кортизон ацетата в хлороформе в массовом соотношении 1:15 при комнатной температуре, добавление к полученному раствору этилового спирта в массовом...
Тип: Изобретение
Номер охранного документа: 0002637504
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f60e

Водно-дисперсионная лакокрасочная композиция

Изобретение относится к водно-дисперсионным лакокрасочным материалам для декоративно-защитного окрашивания изделий из бетона, кирпича всех видов, древесины. Композиция содержит стирол-акриловую дисперсию, представляющую собой взвесь частиц сополимера стирола с эфиром акриловой кислоты в водном...
Тип: Изобретение
Номер охранного документа: 0002637964
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.fd59

Способ выработки управляющих сигналов и способ ручного управления работой экзоскелетона нижних конечностей на его основе, а также интерфейсы управления работой указанного экзоскелетона в режиме ручного и программного управления, использующие указанный способ выработки

Группа изобретений относится к медицинской технике и может быть использована в экзоскелетонах (экзоскелетах) нижних конечностей с пневматическим, гидравлическим или электрическим приводом для обеспечения ходьбы пользователей с полностью или частично парализованными нижними конечностями, а также...
Тип: Изобретение
Номер охранного документа: 0002638276
Дата охранного документа: 12.12.2017
29.12.2017
№217.015.fdd1

Способ имитационного тестирования стойкости приборной структуры к облучению быстрыми нейтронами (варианты)

Группа изобретений относится к способам имитационного тестирования изделий микро- и наноэлектроники. На приборную структуру воздействуют эквивалентным облучением ионами с флюенсом от 10 см до 10 см и энергией в интервале 1-500 кэВ, уточняемыми в зависимости от состава и морфологии структуры,...
Тип: Изобретение
Номер охранного документа: 0002638107
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.03cd

Производное 1'-бромо-2',3',4'-триметоксибензо[5',6':4,5]-(ar, 1s)-1-ацетамидо-6,7-дигидроциклогепта-[3,4-f]-1н-индола и его применение

Настоящее изобретение относится к области органической химии, а именно к производному 1'-бромо-2',3',4'-триметоксибензо[5',6':4,5]-(R,1S)-1-ацетамидо-6,7-дигидроциклогепта-[3,4-ƒ]-1Н-индола и его применению в качестве активного компонента противоопухолевых лекарственных средств для лечения...
Тип: Изобретение
Номер охранного документа: 0002630303
Дата охранного документа: 08.09.2017
19.01.2018
№218.016.0402

Способ краткосрочного прогноза времени регистрации явления коронального выброса массы (квм)

Изобретение относится к солнечно-земной физике и предназначено для краткосрочного прогноза регистрации корональных выбросов массы (КВМ) солнца. Способ краткосрочного прогноза регистрации коронального выброса массы основан на анализе временных и спектральных данных микроволнового солнечного...
Тип: Изобретение
Номер охранного документа: 0002630535
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1990

Дифракционный блок для управления сходимостью рентгеновского пучка

Изобретение относится к дифракционному блоку для управления сходимостью рентгеновского пучка. Дифракционный блок включает дифрагирующий элемент, выполненный в виде дифрагирующей монокристаллической пластины, и подложку, к которой приклеена указанная пластина с кривизной ее рабочей поверхности,...
Тип: Изобретение
Номер охранного документа: 0002636261
Дата охранного документа: 22.11.2017
Показаны записи 1-1 из 1.
27.07.2019
№219.017.b984

Способ культивирования микромицета trichoderma virens

Изобретение относится к биотехнологии. Способ культивирования микромицета Trichoderma virens включает подготовку плотной питательной среды, на поверхность которой вносят порошок из минерала шунгита и посев на нее микромицета Trichoderma virens с последующим культивированием под воздействием...
Тип: Изобретение
Номер охранного документа: 0002695674
Дата охранного документа: 25.07.2019
+ добавить свой РИД