×
30.10.2019
219.017.dbd1

Результат интеллектуальной деятельности: Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного воздействия. Способ включает электроискровое легирование титановой основы и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере. Электроискровое легирование цирконием проводят при плотности переменного тока 0,6-1,9 А/мм. Затем проводят термомодифицирующую обработку при частоте тока на индукторе 90±10 кГц и температуре 1000-1200°С в течении 1-10 секунд. Охлаждение титановых изделий производят на воздухе. Техническим результатом является формирование на поверхности титановых изделий различного назначения локальных покрытий системы Ti-Zr-(Ti,Zr)O, характеризуемых твердостью 10±0,3 ГПа, размером структурных элементов 4-9 мкм и открытой пористостью до 54%. 3 ил., 1 табл., 2 пр.

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)xOy на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного воздействия.

Титановые сплавы, широко применяемые в приборо- и машиностроении, характеризуются низкой износостойкостью. Для повышения срока службы, поверхность титановых изделий упрочняют в процессе термической, химико-термической обработки или нанесением высокопрочных покрытий. Термической обработкой сложно значительно упрочнить поверхность титана. Химико-термическая обработка позволяет повысить коррозионную стойкость, твердость поверхности титана, а также снизить ее коэффициент трения. Широко используются методы формирования функциональных покрытий на титане: электрохимические, CVD, PVD. Указанные методы упрочнения характеризуются длительностью, себестоимостью процесса или его токсичностью. Методы газотермического напыления характеризуются высокой производительностью и позволяют наносить покрытия из тугоплавких материалов (WC, TiC, Мо2С, ТаС, NbC, Cr3C2, Аl2О3) [Heimann R.В. Applications of plasma-sprayed ceramic coatings // Key Engineering Materials. - 1996. - V. 122-124. - P. 399-442.]. Газотермические напыленные покрытия характеризуются наличием дефектов и низкой адгезией. Дефекты устраняются технологически сложными и длительными процессами.

Наибольшее распространение получили PVD, CVD и газотермические напыленные покрытия на основе нитридов, карбидов, боридов и карбонитридов Ti, Та, W и Zr. Указанные соединения в большинстве случаев более твердые и износостойкие чем оксиды данных металлов. При высоких температурах в кислородосодержащих средах оксидные соединения более стабильны, чем карбиды и нитриды. TiN, в зависимости от концентрации кислорода в окружающей среде, начинает окисляться при 350 и интенсивно с 850°С [Tompkins H.G. The initial stages of the oxidation of titanium nitride // Journal of Applied Physics. - 1992. - V.2. - N.71. P. 980-983.]. TiC начинает окисляется на воздухе при температуре свыше 700°С [Voitovich R.F., Pugach Е.А. High-temperature oxidation of titanium carbide // Soviet Powder Metallurgy and Metal Ceramics. - 1972. - V.2. - N.11. - P. 132-136]. ZrC окисляется при температуре более 500°С [Kuriakose А.К., Margrave J.L. The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures // Journal of The Electrochemical Society. - 1964. - V.7. - N.111. - P. 827-831.]. Следовательно на поверхности титановых изделий, работающих в нагретых кислородосодержащих средах, предпочтительнее формировать оксидные покрытия, что способствует поиску новых путей решения имеющейся проблемы.

Известен способ нанесения теплозащитного эрозионно-стойкого покрытия [патент RU на изобретение №2260071 / Л.Х. Балдаев, В.А.Лупанов, Н.Г. Шестеркин, А.П. Шатов, Г.И. Зубарев, М.М. Гойхенберг // Способ нанесения теплозащитного эрозионно-стойкого покрытия. - 2005]. На поверхность изделия напыляется металлический подслой из сплава на никелевой основе толщиной 60-80 мкм. Затем наносится керамическое покрытие из оксида циркония, стабилизированного оксидом иттрия, путем послойного плазменного напыления порошков фракцией 20-60 и 5-20 мкм. Формируемое слоистое керамическое покрытие характеризуется пористостью, уменьшающейся по поперечному сечению к верхнему слою. Пористость, верхнего слоя составляет <1%.

Основными недостатками способа являются высокие значения энергозатрат процесса плазменного напыления, стоимости и расхода порошкового материала, а также технологическая сложность формирования локальных участков покрытия.

Известен также способ получения на титане и его сплавах покрытий, содержащих оксид циркония [патент RU на изобретение №2323278 / B.C. Руднев, Т.П. Яровая, К.Н. Килин // Способ получения на титане и его сплавах покрытий, содержащих оксид циркония. - 2008]. Согласно способу электрохимическая обработка изделия из титана или его сплава проводится в водном электролите, содержащем 20-50 г/л сульфата циркония Zr(SO4)2⋅4H2O в гальваностатическом режиме при эффективной плотности тока 5-30 А/дм2 и напряжении формирования 80-180 В в течение 5-30 мин. В результате обработки на поверхности титана формируется покрытие состоящее на 70% из диоксида циркония в кристаллической и моноклинной модификациях, а также диоксида титана. По данным микрозондового рентгеноспектрального анализа, покрытие содержит, в ат.%: Zr - 22,1; Ti - 10,3 и О - 67,3, что соответствует стехиометрии соединений ZrO2 и TiO2.

Основными недостатками способа являются: токсичность используемого электролита; длительность процесса формирования покрытия; технологическая сложность формирования локального покрытия на поверхности изделия.

Наиболее близким к предлагаемому способу является способ формирования наноструктурированного оксидного покрытия на техническом титане [патент RU на изобретение №2650221 / А.А. Фомин, М.А. Фомина, И.В. Родионов, В.А. Кошуро // Способ формирования наноструктурированного оксидного покрытия на техническом титане. - 2017.] Способ включает электроискровое легирование титановой основы танталом и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере. Электроискровое легирование титановой основы танталом осуществляется при плотности тока 250-800 кА/м2. Затем проводиться термодифицирующая обработка при температуре 950-1000°С в течении 0,25-0,5 минут и частоте тока на индукторе 90±10 кГц, потребляемой удельной электрической мощности 0,2-0,4 Вт/кг. Охлаждение изделий происходит на воздухе. В результате на поверхности титановых изделий различного назначения формируются покрытия системы Ti-Ta-(Ti,Ta)xOy с размером структурных элементов от 30 до 120 нм. Данные покрытия характеризуются твердостью 10-11,5 ГПа при величине модуля упругости 400-550 ГПа.

Основным недостатком способа является то, что указанные режимы электроискровой обработки и последующей термической обработки не подходят для формирования цирконий содержащих оксидных покрытий на титановых сплавах.

Техническая проблема заключается в необходимости создания технологически простого и производительного способа, позволяющего локально на поверхности титановых изделий формировать цирконий содержащее оксидное покрытие.

Поставленная проблема решается тем, что в способе формирования цирконий содержащего оксидного покрытия на титановых сплавах, включающем электроискровое легирование титановой основы и последующую термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, после электроискрового легирования цирконием при плотности переменного тока 0,6-1,9 А/мм2 проводят термомодифицирующую обработку при частоте тока на индукторе 90±10кГц, температуре 1000-1200°С в течении 1-10 секунд, затем охлаждают на воздухе.

Техническим результатом является формирование на поверхности титановых изделий различного назначения локальных покрытий системы Ti-Zr-(Ti,Zr)xOy, характеризуемых твердостью 10±0,3 ГПа, размером структурных элементов 4-9 мкм и открытой пористостью до 54%.

Изобретение поясняется фигурами, на которых представлены: морфология поверхности покрытия, сформированного электроискровым легированием (ЭИЛ) цирконием при плотности тока 0,6±0,01 А/мм2 (Фиг. 1 а,) и 1,9±0,01 А/мм2 (Фиг. 1 б); морфология цирконий содержащих покрытий, сформированными при плотности тока 0,6±0,01 и 1,9±0,01 А/мм2 и последующей термической модификацией (ИТО) путем индукционного нагрева до температуры 1000±1°С при частоте тока на индукторе 90±10 кГц и выдержки в течение 1 секунды (соответственно Фиг. 2. а и Фиг. 2. б); морфология покрытий, сформированных электроискровым легированием цирконием при 0,6±0,01 А/мм2 и последующей термической модификацией путем индукционного нагрева до температуры 1000±1°С (Фиг. 3. а), а также при плотности тока 1,9±0,01 А/мм и выдержке 10 секунд при температуре 1200°С (Фиг. 3. б).

Предлагаемый способ осуществляют следующим образом.

К изделию из титанового сплава подключают электрод, затем подводят цирокниевый электрод-инструмент. Электроды инструмент и изделие подключают к источнику переменного тока из расчета, что плотность тока на циркониевом электроде составляет величину 0,6-1,9 А/мм2. Осуществляют электроискровое легирование титановой основы и последующую термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, для этого на поверхность изделия переносится цирконий, образующий закристаллизовавшиеся частицы - сплэты. В процессе последующей обработки из сплэтов формируется цирконий содержащее покрытие (Фиг. 1 а и б). Затем изделие помещают в керамическую камеру, повторяющую форму изделия, на внешней поверхности которой размещен водоохлаждаемый индуктор, подключенный к источнику питания. После чего осуществляют термомодифицирующую обработку, для этого изделие подвергают индукционному нагреву при частоте тока на индукторе 90±10кГц до температуры 1000-1200°С, последующей выдержке в течение 1-10 секунд и охлаждению на воздухе. В результате на поверхности изделия образуется оксидное покрытие с гетерогенной поверхностью (Фиг. 2 и 3).

Технологические режимы электроискрового легирования и последующей термической модификации были определены путем проведения экспериментальных исследований. Приведенные предельные значения технологических режимов обеспечивают формирование на титановых сплавах оксидного покрытия системы Ti-Zr-(Ti,Zr)xOy с гетерогенной поверхностью.

Предельные значения плотности переменного тока при электроискровой обработке обусловлены тем, что величина плотности тока влияет на массоперенос, микрорельеф, состав и твердость формируемых покрытий. Так при плотности тока менее 0,6 А/мм2 снижается производительность процесса, а после термомодифицирующей обработки данные покрытия переходят в окалину. При плотности тока более 1,9 А/мм2 происходит значительное окисление поверхности покрытия, снижается массоперенос циркония.

При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 100 кГц не происходит улучшение эффективности процесса обработки и наблюдается снижение коэффициента мощности.

При значениях температуры нагрева менее 1000°С и продолжительности процесса термомодифицирующей обработки менее 1 секунд производительность процесса окисления циркония незначительна. При значениях температуры нагрева более 1200°С и продолжительности термообработки более 10 секунд происходит образование значительного слоя окалины, в которую переходит циркониевое покрытие.

Примеры выполнения способа.

Пример 1. Диск диаметром 14 мм и высотой 2 мм из титана ВТ1, предварительно очищенный от технологических загрязнений, закреплялся в трехкулачковом патроне токарного станка к которому подключался скользящий электрод. Электрод инструмент с циркониевым расходным электродом фиксировался в резцедержателе. Процесс нанесения покрытия имитировал процесс подрезания торца. Материал переносился при плотности переменного тока 0,6±0,01 А/мм2. Затем титановый диск помещался в керамическую камеру оксидирования. Термическое оксидирование производили путем бесступенчатого индукционного нагрева при частоте тока на индукторе 100±20кГц до температуры 1000°С, выдержка составляла 1 секунду. Затем титановую основу с покрытием постепенно охлаждали в камере до температуры 100°С и ниже.

Пример 2. Цилиндр диаметром 14 мм и длиной 30 мм из титана ВТ1, предварительно очищенный от технологических загрязнений, закреплялся в трехкулачковом патроне токарного станка к которому подключен электрод. Электрод инструмент с циркониевым расходным электродом фиксировался в резцедержателе. Процесс формирования покрытия имитировал процесс точения, следовательно покрытие формировалось на боковой поверхности цилиндра. Плотность тока при электроискровой обработке составляла 1,9 А/мм2. После формирования цирконий содержащего покрытия, титановый цилиндр помещали в керамическую камеру оксидирования. Индукционная химикотермическая модификация проводилась путем нагрева при частоте тока на индукторе 100±20 кГц. Нагрев проводился до температуры 1200°С, производилась выдержка в течении 10 секунд. После выдержки, титановую основу охлаждали в керамической камере до температуры 100°С.

Для подтверждения формирования на поверхности технического титана цирконий содержащих оксидных покрытий в результате обработки, описанной в предложенном способе, были проведены исследования морфологии и состава, а также измерения твердости. Исследовались образцы из титанового сплава ВТ1-0 с оксидными покрытиями, сформированными по способам, описанному в примерах 1 и 2. Морфология покрытий изучалась методом растровой электронной микроскопии (РЭМ) на электронном микроскопе «MIRA II LMU». Величина открытой пористости, линейные размеры зерен и дефектов покрытия определялись с использованием программного обеспечения «Metallograph» по РЭМ-изображениям полученным при увеличении 5 kx. Площадь анализируемых участков составляла 825 мкм2.

Элементный состав покрытий определялся методом энергодисперсионного рентгенофлуоресцентного анализа (погрешность концентраций ±0,5 ат. %) на электронном микроскопе «MIRA II LMU» детектором «INCA PentaFETx3». Микротвердость измеряли с использованием микротвердомера «ПМТ-3М» при нагрузке на индентор 100 гс, согласно требованиям известных нормативных документов (ГОСТ 9450 -76, ISO 6507-1:2005).

Сформированные при плотности переменного тока 0,6 А/мм2 покрытия состояли из отдельных частиц, которые неравномерно распределены по основе (Фиг. 1, а). Циркония перенеслось на поверхность 21,8 ат. %, 46 ат. % в покрытии титан. Покрытие характеризовалось также наличием на поверхности сплэтов сферических элементов размером 7,8±3,9 мкм. При этом пористость составляла 48%, а средний размер пор 5,3±4,4 мкм.

Увеличение плотности тока до 1,9 А/мм2 привело к более плотному распределению частиц по подложке (Фиг. 1, б). Перенос циркония не увеличился, его содержание составило 21,9 ат. %. Содержание кислорода увеличилось до 39,7 ат. %. Размер отдельных кристаллов и пор уменьшился до 6,6±3,2 и 4,4±3,9 мкм соответственно. Открытая пористость возросла до 52%.

Проведение термомодификации при 1000°С длительностью 1 секунда не влияло на макроморфологию покрытий (Фиг. 2, а, б). В покрытиях сформированных при 0,6 А/мм2 после термомодифицирующей обработки содержание кислорода составляло 51,2 ат. %, а циркония 3,8 ат. %. Пористость покрытия составляла 52%. Средние размеры структурных элементов: зерна - 8,81±4 мкм; поры - 5,8±5 мкм (Фиг. 3. а).

Покрытия сформированные при плотности переменного тока 1,9 А/мм2, температуре обработки 1200°С и длительности 10 секунд характеризовались зернами, со средним размером до 6,3±3 мкм и порами размером 4,7±4 мкм (Фиг. 3, б). Пористость покрытия составляла 58%. Содержание циркония в покрытие составляло 1,1 ат. %.

Результаты измерения твердости покрытий, сформированных электроискровым легированием цирконием титановой основы и последующей индукционной термомодифицирующей обработкой, представлены в таблице.

Согласно анализу состава и измерениям твердости сформированные покрытия являлись оксидными. Из полученных результатов следует, что предложенный способ позволяет формировать твердые, высокопористые цирконий содержащие оксидные покрытия системы Ti-Zr-(Ti,Zr)xOy на изделиях из сплавов титана.

Способ формирования цирконийсодержащего оксидного покрытия на изделиях из титановых сплавов, включающий электроискровое легирование титановой основы и последующую термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, отличающийся тем, что электроискровое легирование цирконием проводят при плотности переменного тока 0,6-1,9 А/мм, а термомодифицирующую обработку осуществляют при частоте тока на индукторе 90±10 кГц, температуре 1000-1200°С в течение 1-10 секунд, после чего проводят охлаждение на воздухе.
Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах
Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах
Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах
Источник поступления информации: Роспатент

Показаны записи 11-20 из 164.
20.04.2016
№216.015.3621

Фотокаталитическое покрытие

Изобретение относится к химической промышленности, а именно к пленкам и покрытиям, фотокаталитически активным в видимой области спектра солнечного излучения. Описано Фотокаталитическое покрытие в виде композиционного материала. Композиционный материал состоит из двух слоев, нанесенных на...
Тип: Изобретение
Номер охранного документа: 0002581359
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.364e

Антисептическое средство

Изобретение относится к медицине и представляет собой антисептическое средство, включающее полиазолидинаммоний, модифицированный гидрат-ионами йода в количестве 15-25 мас.%, перекись водорода в количестве 1-10 мас.% и дистиллированную воду - остальное. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002581826
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.375c

Способ поверхностного упрочнения и стабилизации маложестких изделий

Изобретение относится к машиностроению и может быть использовано для поверхностного упрочнения и стабилизации торсионных валов при обработке источниками с высокой концентрацией энергии. Способ поверхностного упрочнения торсионных валов включает изменение уровня лазерного теплового воздействия...
Тип: Изобретение
Номер охранного документа: 0002581691
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ced

Способ обработки кольцевой детали непрерывной обкаткой тремя валками

Изобретение относится к обработке кольцевой детали обкаткой. Устанавливают деталь между тремя валками, с помощью которых обеспечивают деформацию детали и ее непрерывную обкатку между ними. Максимальную величину деформации детали определяют из равенства: где D - диаметр наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002583520
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dbf

Способ стабилизации параметров колец шарикоподшипников

Изобретение относится к обработке дорожек качения колец шарикоподшипников. Осуществляют вращение кольца шарикоподшипника и прижатие к дорожке его качения шарикового раскатного инструмента. Ось шарикового раскатного инструмента совмещают с осью вращения кольца шарикоподшипника. Используют...
Тип: Изобретение
Номер охранного документа: 0002583510
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.670e

Смесь для изготовления пенобетона

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент...
Тип: Изобретение
Номер охранного документа: 0002591996
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68cc

Способ и устройство для охлаждения стекловаренной печи

Изобретение относится к области производства листового стекла в регенеративных стекловаренных печах непрерывного действия, а именно к технике принудительного охлаждения огнеупорной кладки варочного бассейна стекловаренных печей. Техническим результатом настоящего изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002591995
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7390

Способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002597750
Дата охранного документа: 20.09.2016
Показаны записи 11-20 из 25.
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.841c

Способ получения износостойких покрытий на изделиях из алюминия и его сплавов

Изобретение относится к области получения износостойких и коррозионно-стойких покрытий на изделиях из алюминия и его сплавов. Способ характеризуется тем, что изделие подвергают микродуговому оксидированию в анодно-катодном режиме при плотности тока 7-7,5 А/дм и соотношении анодного и катодного...
Тип: Изобретение
Номер охранного документа: 0002602903
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b15

Способ формирования наноструктурированного биоинертного покрытия на титановых имплантатах

Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов. Способ включает воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование....
Тип: Изобретение
Номер охранного документа: 0002604085
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a42d

Способ формирования керамического покрытия на основе диоксида циркония на изделии из титанового сплава

Изобретение относится к области получения керамических покрытий методами электроплазменного напыления на изделиях из титановых сплавов и может быть использовано в приборостроении и машиностроении, в частности в деталях компрессоров и турбин газотурбинных двигателей, в имплантируемых медицинских...
Тип: Изобретение
Номер охранного документа: 0002607390
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa48

Способ формирования оксидных покрытий на изделиях из титановых сплавов

Изобретение относится к технологии формирования оксидных покрытий на титановых изделиях технического и медицинского назначения, например элементах пар трения и метизных изделиях. Титановое изделие подвергают индукционному нагреву в воздушной атмосфере до температуры 700-800°С при частоте тока...
Тип: Изобретение
Номер охранного документа: 0002611617
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.da72

Способ химико-термической индукционной обработки малогабаритных изделий из альфа-титановых сплавов

Изобретение относится к металлургии, а именно к химико-термической обработке и упрочнению малогабаритных изделий конструкционного и медицинского назначения, например метизных изделий и стоматологических имплантатов, изготовленных из альфа-сплавов титана. Способ химико-термической индукционной...
Тип: Изобретение
Номер охранного документа: 0002623979
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3d05

Способ формирования титановых пористых покрытий на титановых имплантатах

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную...
Тип: Изобретение
Номер охранного документа: 0002647968
Дата охранного документа: 21.03.2018
+ добавить свой РИД