×
10.05.2018
218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях. Способ формирования оксидных покрытий на изделиях из циркониевых сплавов включает размещение изделий в камере оксидирования, последующий нагрев, выдержку и охлаждение до температуры 100°С и ниже. Оксидирование проводят в воздушной атмосфере при давлении 0,1±0,01 МПа, при этом изделия подвергают индукционному нагреву при частоте тока на индукторе 100±20 кГц и потребляемой удельной электрической мощности 100-140 кВт/кг до температуры 800-1000°С, затем выдерживают при данной температуре в течение 3-5 минут. Обеспечивается формирование оксидного покрытия с микротвердостью 17,3±0,5 ГПа, состоящего преимущественно из моноклинной фазы диоксида циркония, с помощью технологически более простого и производительного способа. 4 ил., 2 табл., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях.

Для повышения твердости, износостойкости и коррозионной стойкости циркониевых сплавов на их поверхности различными методами формируют функциональные покрытия, в том числе оксидные [Куприн А.С. и др. Высокотемпературное окисление на воздухе оболочек из циркониевых сплавов Э110 и Zr-l Nb с покрытиями // Вопросы атомной науки и техники. - 2014. - С. 126-132]. Известные технологии формирования на циркониевых сплавах оксидных покрытий характеризуются наличием ряда недостатков, а именно большой продолжительностью процесса, технологической сложностью, токсичностью применяемых материалов, что способствует разработке новых методов формирования защитных покрытий на изделиях из циркониевых сплавов.

Известен способ получения защитного покрытия на цирконии для получения размерных сплошных устойчивых покрытий на цирконии и его сплавах, заключающийся в проведении двухэтапного процесса анодирования. На первом этапе анодирование проводят при плотности тока 10-20 мА/см2 и напряжении 95-130 В в безводном электролите, содержащем фториды. Затем образец подвергают катодной поляризации в 4% водном растворе борной кислоты с добавлением 25% раствора аммиака при напряжении 95-130 В, отмывке в дистилированной воде и сушке. На втором этапе проводят анодное электрохимическое окисление циркония в электролите, в котором проводили катодную поляризацию, в режиме постоянного тока при плотности тока 1-5 мА/см2 и напряжении 200-300 В [патент RU на изобретение №2472873 / В.В. Чернышев, А.В. Чернышев, Д.М. Аичкин // Способ получения защитного изоляционного покрытия на цирконии. - 2013].

Основными недостатками способа являются: токсичность используемых электролитов и технологическая сложность процесса.

Известен также способ оксидирования металлов, в частности циркония, заключающийся в окислении металлов и сплавов путем воздействия на них парогазовой среды при температуре 375-575°C и естественной циркуляции парогазовой среды в паровой камере, а парциальное давление пара в процессе обработки поддерживают не менее 10% от общего давления парогазовой среды. Длительность процесса оксидирования циркония и его сплавов достигает 10 ч [патент RU на изобретение №2189400 / В.Н. Феофанов, Л.В. Шмаков, В.И. Лебедев, Н.А. Мочалов, В.П. Брусаков, В.А. Козлов, В.И. Черемискин // Способ оксидирования металлов и сплавов и устройство для его реализации. - 2002].

Основными недостатком способа является: большая продолжительность процесса обработки.

Наиболее близким к предлагаемому способу является способ антикоррозионной защиты изделий из циркония и его сплавов, заключающийся в том, что изделия из циркония и его сплавов размещают в камере оксидирования, в которой затем создают разрежение с остаточным давлением не выше 6,67×10-6 Па, после чего камеру заполняют кислородом до давления не ниже 5066,25 Па, нагревают в ней изделие до температуры 200-600°C и формируют на поверхности циркония антикоррозионное покрытие в виде химического соединения газа и металла. Нагрев изделия осуществляют ступенчато, время выдержки при температуре, соответствующей каждой ступени, составляет не менее 3 минут. Изделие выдерживают при температуре нагрева не менее 10 минут. Затем проводят охлаждение в камере в среде кислорода до температуры 100°C и ниже [патент RU на изобретение №2382120 / А.Н. Семенов, В.П. Гордо, М.И. Плышевский, Г.Н. Шевелев // Способ антикоррозионной защиты изделий из циркония и его сплавов. - 2010 (прототип)].

Основными недостатками способа являются: технологическая сложность и длительность процесса.

Технической проблемой является необходимость создания технологически простого производительного способа формирования оксидного покрытия на изделиях из циркониевых сплавов.

Поставленная проблема решается тем, что процесс оксидирования проводят путем бесступенчатого индукционного нагрева изделий из циркониевых сплавов в воздушной атмосфере при давлении 0,1±0,01 МПа, частоте тока на индукторе 100±20 кГц и потребляемой удельной электрической мощности 100-140 кВт/кг до температуры 800-1000°C, затем выдерживают при данной температуре в течение 3-5 минут и охлаждают до температуры 100°C и ниже.

Техническим результатом является формирование оксидного покрытия с микротвердостью 17,3±0,5 ГПа, состоящего преимущественно из моноклинной фазы диоксида циркония, на поверхности циркониевых изделий технического и медицинского назначения с помощью технологически более простого и производительного способа.

Изобретение поясняется графическими схемами, на которых представлены: процесс термического оксидирования циркониевых изделий (фиг. 1); рентгеновские дифрактограммы циркониевых образцов, а именно исходного металла и с оксидными покрытиями, сформированными согласно предлагаемому способу в течение 300 секунд при температурах 800 и 1000°C (фиг. 2, 3 и 4 соответственно).

На фиг. 1 позициями 1-5 обозначены

1 - циркониевое изделие;

2 - керамическая камера оксидирования;

3 - водоохлаждаемый индуктор;

4 - источник питания;

5 - оксидное покрытие.

Предлагаемый способ осуществляют следующим образом.

Циркониевое изделие 1, предварительно очищенное от технологических загрязнений, помещают в керамическую камеру оксидирования 2 (повторяющую форму изделия), на внешней поверхности которой размещен водоохлаждаемый индуктор 3, подключенный к источнику питания 4 (фиг. 1). Затем изделие 1 подвергают бесступенчатому индукционному нагреву в воздушной атмосфере при давлении 0,1±0,01 МПа, частоте тока на индукторе 100±20кГц и потребляемой удельной электрической мощности 100-140 кВт/кг до температуры 800-1000°C, затем выдерживают при данной температуре в течение 3-5 минут и охлаждают до температуры 100°C и ниже. В результате на поверхности изделия 1 образуется оксидное покрытие 5 (фиг. 1).

Технологические режимы оксидирования были определены путем проведения исследований элементно-фазового состава, структуры и твердости поверхностного слоя оксидированных циркониевых образцов методами энергодисперсионного рентгенофлуоресцентного (ЭРДФА) и рентгенно-фазового анализа (РФА), а также измерения микротвердости. Приведенные пределы значений технологических режимов оксидирования обеспечивают формирование на цирконии оксидного покрытия, обладающего высокими показателями твердости и состоящего в основном из диоксида циркония с моноклинной структурой.

При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 120 кГц не происходит улучшение эффективности процесса обработки и наблюдается снижение коэффициента мощности.

Предельные значения потребляемой удельной электрической мощности (100-140 кВт/кг) обусловлены тем, что при величине удельной электрической мощности менее 100 кВт/кг будет затруднен нагрев малогабаритных циркониевых изделий до заданной температуры из-за потерь на излучение и конвекцию. При величине удельной электрической мощности более 140 кВт/кг увеличивается вероятность перегрева и, как следствие, образование оксидных покрытий большой толщины (свыше 50 мкм). Данные покрытия обладают низкой адгезионно-когезионной прочностью, а также характеризуются наличием трещин.

При значениях температуры нагрева менее 800°C и продолжительности процесса оксидирования менее 3 минут образуется тонкое оксидное покрытие, обладающее низкими значениями твердости. При значениях температуры нагрева более 1000°C и продолжительности термообработки более 5 мин на поверхности циркония образуются оксидные покрытия толщиной более 50 мкм с невысокими показателями адгезионно-когезионной прочности.

Пример выполнения способа

Заготовку для датчика из циркониевого сплава Э110, представляющую собой диск диаметром 14 мм и высотой 3 мм, предварительно очищенную от технологических загрязнений, помещали в керамическую камеру оксидирования. Термическое оксидирование производили путем бесступенчатого индукционного нагрева при частоте тока на индукторе 100±20кГц и потребляемой удельной электрической мощности 100-140 кВт/кг до температуры 900°C, затем выдерживали при данной температуре в течение 3 минуты и постепенно охлаждали в камере до температуры 100°C и ниже.

Для подтверждения формирования оксидных покрытий на поверхности циркония и его сплавов в результате проведения обработки согласно предлагаемому способу были проведены исследования оксидированных образцов, представляющих собой диски диаметром 14 мм и высотой 3 мм из циркониевого сплава Э110. Исследование химического состава поверхности осуществлялось методом ЭДРФА (погрешность концентраций ±5%) с использованием электронного микроскопа MIRA II LMU. Фазовый состав образцов с покрытием определялся на монокристальном рентгеновском дифрактометре Xcalibur/Gemini А при использовании рентгеновской трубки с медным анодом (Cu-Kα излучение). Для анализа дифрактограмм использовались программное обеспечение MATCH! Phase identification from Powder Diffraction Version 1.9 и база данных AMCSD Bonn, Germany от 09.01.09. Твердость оксидных покрытий оценивалась методом наноиндентирования с использованием тестера механических свойств NANOVEA Ergonomic Workstation при нагрузке 100 мН (ГОСТ 8.748-2011, ISO 145771-2002).

Результаты ЭРДФА показали, что покрытие состоит из циркония и кислорода в соотношениях от 24,5 до 40 ат. % и от 60 до 65,5 ат. % соответственно. В результате РФА установлено, что исходный цирконий (КО - контрольный образец) имеет гексагональную структуру (Фиг. 2). После оксидирования появляются следующие фазы циркония и его оксидов: Zr-hexagonal (α - Zr), Zr-cubic (β - Zr), ZrO2 - с моноклинной кристаллической структурой (m - ZrO2); ZrO2 - с кубической кристаллической структурой (с-ZrO2) (Фиг. 3, 4). Процентное соотношение фаз металлического циркония и его оксидов зависит от температуры и длительности оксидирования (табл.1).

Результаты исследований показали также, что микротвердость поверхности циркониевых образцов значительно увеличивается после процесса термического оксидирования с 2,5±0,1 ГПа до 17,3±0,5 ГПа (табл. 2).

Из полученных результатов следует, что предложенный способ позволяет формировать оксидные покрытия с твердостью до 17,3±0,5 ГПа, состоящие преимущественно из моноклинной фазы диоксида циркония, на поверхности циркониевых изделий технического и медицинского назначения с помощью технологически более простого и производительного способа.

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов, включающий размещение изделий в камере оксидирования, последующий нагрев, выдержку и охлаждение до температуры 100°С и ниже, отличающийся тем, что оксидирование проводят в воздушной атмосфере при давлении 0,1±0,01 МПа, при этом изделия подвергают индукционному нагреву при частоте тока на индукторе 100±20 кГц и потребляемой удельной электрической мощности 100-140 кВт/кг до температуры 800-1000°С, затем выдерживают при данной температуре в течение 3-5 минут.
Способ формирования оксидных покрытий на изделиях из циркониевых сплавов
Способ формирования оксидных покрытий на изделиях из циркониевых сплавов
Способ формирования оксидных покрытий на изделиях из циркониевых сплавов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 164.
10.04.2016
№216.015.2f69

Жидкостекольная композиция

Изобретение относится к области производства строительных материалов, а именно к составам полимерсиликатных смесей, предназначенных для изготовления конструктивных элементов, работающих в условиях агрессивных сред. Техническим результатом является повышение водостойкости и биостойкости...
Тип: Изобретение
Номер охранного документа: 0002580539
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fc2

Устройство для образования винтового профиля на стенках скважин под буронабивные сваи (дополнительное)

Изобретение относится к строительству, а именно к устройствам, повышающим несущую способность буронабивных свай, и найдет применение при строительстве фундаментов зданий и сооружений. Устройство для образования винтового профиля на стенках скважин под буронабивные сваи, содержащее рабочий...
Тип: Изобретение
Номер охранного документа: 0002580120
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.309d

Способ обработки поверхности фторсодержащей резины

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления...
Тип: Изобретение
Номер охранного документа: 0002580722
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34f7

Свч-печь

Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода. При...
Тип: Изобретение
Номер охранного документа: 0002581689
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.350e

Способ стабилизации параметров шарикоподшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число...
Тип: Изобретение
Номер охранного документа: 0002581414
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.354f

Способ правки длинномерных деталей

Изобретение относится к холодной обработке металлов давлением, а точнее к способам и устройствам для правки и стабилизации размеров длинномерных цилиндрических деталей. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают роликом, который...
Тип: Изобретение
Номер охранного документа: 0002581692
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.357d

Способ формирования серебросодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Описан способ получения серебросодержащего биопокрытия титанового имплантата, заключающийся в предварительной...
Тип: Изобретение
Номер охранного документа: 0002581825
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35b1

Сорбционно-флуоресцентный способ определения содержания полициклических ароматических углеводородов в водных растворах и сорбент для реализации способа

Изобретение относится к области химии окружающей среды, к аналитической химии и может быть использовано для определения содержания полициклических ароматических углеводородов (ПАУ) в водной среде. Способ определения содержания полициклических ароматических углеводородов в водных растворах...
Тип: Изобретение
Номер охранного документа: 0002581411
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3611

Способ стабилизации параметров подшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении колец подшипника под внешней осевой нагрузкой, внешнюю нагрузку устанавливают равной Р=k С, а частоту вращения подшипника...
Тип: Изобретение
Номер охранного документа: 0002581408
Дата охранного документа: 20.04.2016
Показаны записи 1-10 из 25.
20.01.2013
№216.012.1b7e

Остеоинтеграционное покрытие на ортопедические и стоматологические титановые имплантаты

Изобретение относится к области медицинской техники, а именно к остеоинтеграционным оксидным покрытиям на ортопедические и стоматологические титановые имплантаты. Покрытие состоит из оксида титана и содержит гидроксиапатит как модифицирующий компонент с биоактивными свойствами и медь как...
Тип: Изобретение
Номер охранного документа: 0002472532
Дата охранного документа: 20.01.2013
20.08.2013
№216.012.5f23

Внутрикостный цилиндрический имплантат для протезирования зубов верхней и нижней челюстей

Изобретение относится к медицинской технике, а именно к внутрикостным цилиндрическим имплантатам для протезирования зубов верхней и нижней челюстей. Внутрикостный цилиндрический имплантат для протезирования зубов верхней и нижней челюстей содержит металлическую коническую коронковую часть с...
Тип: Изобретение
Номер охранного документа: 0002489987
Дата охранного документа: 20.08.2013
10.06.2014
№216.012.d04c

Способ получения оксидного биосовместимого покрытия на чрекостных имплантатах из нержавеющей стали

Изобретение относится к области медицинской техники, а именно к способам получения оксидных биосовместимых покрытий на чрескостных металлических имплантатах для травматологии и ортопедии. Получение биосовместимого покрытия на чрескостных имплантатах из нержавеющей стали (12X18Н9Т, 12Х18Н10Т)...
Тип: Изобретение
Номер охранного документа: 0002519095
Дата охранного документа: 10.06.2014
20.02.2015
№216.013.2ac8

Способ получения оксидного покрытия на стальных чрескостных имплантатах

Изобретение относится к области медицинской техники. Описан способ получения оксидных биосовместимых покрытий на стальных чрескостных имплантатах, который осуществляют путем их термического оксидирования на воздухе при температуре 300-600°С в условиях обдувки воздухом, подаваемым в рабочую...
Тип: Изобретение
Номер охранного документа: 0002542409
Дата охранного документа: 20.02.2015
20.04.2015
№216.013.435a

Способ получения оксидного биосовместимого покрытия на металлических имплантатах для наружного чрескостного остеосинтеза

Изобретение относится к области медицинской техники, а именно к способу получения оксидного биосовместимого покрытия на чрескостном металлическом имплантате. Способ заключается в оксидировании имплантата в смеси перегретого водяного пара и наночастиц серебра при температуре 500-550°C, давлении...
Тип: Изобретение
Номер охранного документа: 0002548740
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.482d

Способ модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами

Изобретение относится к медицине, а именно к способу модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами. При осуществлении способа проводят термообработку поверхности титановых имплантатов аргоно-плазменной струей при токе дуги 150-250 А,...
Тип: Изобретение
Номер охранного документа: 0002549984
Дата охранного документа: 10.05.2015
10.11.2015
№216.013.8be2

Способ нанесения покрытий на обработанные поверхности изделий из титана и его сплавов

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида...
Тип: Изобретение
Номер охранного документа: 0002567417
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9a1f

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине и заключается в способе нанесения биокерамических покрытий на имплантат. При осуществлении способа смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, наносят...
Тип: Изобретение
Номер охранного документа: 0002571080
Дата охранного документа: 20.12.2015
10.04.2016
№216.015.309d

Способ обработки поверхности фторсодержащей резины

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления...
Тип: Изобретение
Номер охранного документа: 0002580722
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34bc

Способ обработки поверхности изделий на основе пиролитического углерода

Изобретение относится к области изготовления изделий медицинского назначения на основе пиролитического углерода и может быть использовано для протезов клапана сердца. Технический результат изобретения - повышение качества изделий путем снижения шероховатости и поверхностной пористости....
Тип: Изобретение
Номер охранного документа: 0002581177
Дата охранного документа: 20.04.2016
+ добавить свой РИД