×
30.10.2019
219.017.dbb2

Результат интеллектуальной деятельности: АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для гальванического получения наноструктур. Аппарат для автоматизированного получения слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси включает набор емкостей с растворами электролитов и промывочными растворами, электроды, источник постоянного тока и устройство для управления режимом электроосаждения, при этом аппарат содержит моторизованное устройство для перемещения электродов относительно основания, на котором размещены емкости с растворами, обеспечивая формирование металлических слоев различного состава, при этом рабочий электрод представляет собой пористую пленку с цилиндрическими каналами, обеспечивающую условия для роста нанопроводов за счет ограничения направлений роста металла стенками пор. Предложенный аппарат позволяет получать нанопровода с четкой границей между соседними слоями. Процесс электроосаждения автоматизирован, обеспечивая возможность воспроизводимого получения слоев заданной толщины, причем их количество в единичном нанопроводе может превышать 1000 шт. 11 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для гальванического получения наноструктур, а более конкретнее, слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси. Нанопровода, изготовленные с помощью данного изобретения перспективны для создания элементной базы наноэлектроники, в том числе сверхпроводящей.

Известны различные способы изготовления субмикронных джозефсоновских структур, в основе которых лежат технологии послойного напыления тонких пленок сверхпроводников, барьеров и функциональных слоев на диэлектрическую подложку и формирования их топологии методами плазменного или химического травления и электроннолучевой или фотолитографии. Структуры джозефсона, в свою очередь разделяются на два основных типа: сэндвичевые и планарные, что обусловлено способами их изготовления. Нерешенной на сегодняшний день проблемой является уменьшение джозефсоновских структур до субмикронного уровня для их интеграции в электрические цепи с высокой плотностью упаковки активных элементов.

Известно, что использование планарных структур и нанопроводов в качестве линий для протекания сверхпроводящего тока повышает характеристические параметры элементов электрических цепей по сравнению с сэндвичевыми - микронными в XY направлениях структурах [Skryabina O.V., Egorov S.V., Goncharova A.S., et al., Applied Physics Letters ПО (2017) 222605]. Поэтому способ изготовления субмикронных систем на единичном нанопроводе в первую очередь характеризуется тем, что привычный сэндвичевый (послойный) объект может быть создан новым способом, в новой "планарно-сэндвичевой" топологии [Патент RU №2599904 29.06.2015 г. B.C. Столяров «Способ изготовления устройства с субмикронным джозефсоновским π-контактом»], что позволит изготовить его с субмикронными размерами, как по толщине слоя (направление-Z), так и в латеральных направлениях X и Y. Для этого изготавливается многослойный нанопровод с чередующимися слоями, например: нормальный металл - ферромагнетик - нормальный металл -ферромагнетик… и так далее. При этом диаметр нанопровода будет определять латеральные размеры ферромагнитной прослойки и может варьироваться от 30 до 300 нм. Участки провода могут быть выполнены из Сu, Au, Pd и других проводящих материалов. Затем, такой многослойный провод, горизонтальным образом (то есть планарно), помещается на подложку, где к нему подводятся контакты методами литографии и напыления. Ключевым моментом при создании гибридных джозефсоновских контактов с использованием единичных нанопроводов в качестве элемента слабой связи является технология получения сегментированных (или слоистых) нанопроводов субмикронного диаметра.

Перспективным методом получения сегментированных нанопроводов является темплатное электроосаждение металлов с применением в качестве матриц пористых материалов с цилиндрическими каналами (например, пористые пленки анодного оксида алюминия, трековые мембраны).

Существует два способа формирования сегментированных наноструктур, состоящих из чередующихся слоев А и В:1) из смешанного электролита, чередуя условия осаждения; 2) из индивидуальных электролитов, циклически меняя раствор и условия электрокристаллизации [Mieszawska A.J., Jalilian R., Sumanasekera G.U., Zamborini F.P., Small 3 (2007) 722]. При осаждении из смешанного электролита невозможно получить слои из чистого менее благородного металла, находящегося в растворе одновременно с ионами более благородного металла. Кроме того, из смешанного электролита проблематично выращивание протяженных сегментов из более благородного металла, из-за малой концентрации ионов этого металла в растворе электролита. Решить эту проблему возможно с использованием второго способа - осаждения слоев из индивидуальных электролитов. Главным недостатком данного метода является трудоемкость и, как следствие, низкая технологичность. Важно отметить, что данная методика, помимо прочего, позволяет осаждать сегменты, используя несовместимые между собой электролиты.

В последнее время большое распространение получили станки с числовым программным управлением. Автоматизация процесса изготовления существенно увеличивает количество годных деталей и уменьшает долю ручного труда. Одним из типов таких станков являются 3D принтеры, которые активно используются в современной технологии. Отличие от традиционных фрезерных и токарных станков заключается в том, что с помощью 3D печати требуемая деталь создается по подходу снизу вверх, а не сверху вниз. При этом принцип позиционирования головного устройства остается одинаковым. В рамках настоящего изобретения разработана конструкция аппарата для электрохимического получения слоистых металлических нанопроводов методом темплатного электроосаждения, меняя состав электролита и условия осаждения в автоматическом режиме по заранее заданной программе.

Известен способ получения слоистых гальванических покрытий в автоматизированном режиме, выбранный в качестве наиболее близкого аналога (прототипа), описание которого представлено в патенте [Патент RU №2555272 21.10.2013 г. П.А. Тихонов и др. «Электрохимический роботизированный комплекс для формирования наноразмерных покрытий»]. В данном решении автоматизация процесса смены электролита, а также контроль толщины формирующихся слоев позволяют создавать многослойные пленки с контролируемой последовательностью слоев. Однако конструкция используемых электродов не предполагает возможность формирования нанопроводов.

Задачей настоящего изобретения является усовершенствование конструкции гальванических устройств, предназначенных для электроосаждения металлических наноструктур.

Технический результат, достигаемый в заявляемом изобретении, заключается в появлении возможности воспроизводимого формирования металлических нанопроводов со слоистой структурой и четкой границей между слоями.

Поставленная задача решается тем, что для получения слоистых нанопроводов используется аппарат, позволяющий проводить электроосаждение металлов в трехэлектродной конфигурации, последовательно меняя состав раствора электролита в автоматизированном режиме по заранее заданной программе.

Заявляемый аппарат для электрохимического получения слоистых металлических нанопроводов включает набор емкостей с растворами электролитов и промывочными растворами, электроды, источник постоянного тока и устройство для управления режимом электроосаждения, а также моторизованное устройство для перемещения электродов относительно основания, на котором размещены емкости с растворами, выполненное с возможностью по заданной программе переносить электроды из емкости в емкость от 2 до 10000 раз и выдерживать их в растворе электролита в течение интервала времени от 0,1 до 10000 секунд, требуемого для электроосаждения слоя металла толщиной от 0,1 до 5000 нм, обеспечивая формирование металлических слоев различного состава, при этом рабочий электрод представляет собой пористую пленку с цилиндрическими каналами, обеспечивающую условия для роста нанопроводов за счет ограничения направлений роста металла стенками пор.

Наилучший вариант реализации изобретения достигается когда аппарат содержит три электрода - рабочий электрод, электрод сравнения и вспомогательный электрод, обеспечивая возможность проводить электроосаждение металлов и/или их сплавов в трехэлектродной конфигурации с точным контролем потенциала осаждения. При этом все три электрода объединены в сборку, которая перемещается целиком при перемещении рабочего электрода между емкостями.

В качестве пористой пленки в рабочем электроде выступает трековая мембрана или пленка анодного оксида алюминия толщиной от 1 до 200 мкм со сквозными порами с диметром от 10 до 500 нм. Пористая пленка ограничивает рост металла в определенных направлениях и задает геометрические параметры массива формирующихся нанопроводов. С одной стороны она покрыта сплошным слоем инертного металла. В качестве металла, покрывающего пористую пленку с одной стороны, используют медь, никель, серебро, золото, платину, а также их сплавы. Доступ электролита в поры пленки, ограничивающей рост металла, реализован лишь с одной стороны, исключая возможность роста металла где бы то ни было, кроме как в порах пленки, и создавая условия для роста в результате гальванического осаждения наноструктур исключительно в виде нанопроводов.

В качестве источника постоянного тока используется потенциостат. Емкости могут содержать как электролиты для осаждения металлов, так и растворы для промывки и предварительной подготовки поверхности, а количество емкостей с растворами может достигать 200 шт. Моторизованное устройство для перемещения рабочего электрода реализовано на основе шаговых двигателей и позволяет перемещать рабочий электрод относительно основания аппарата с емкостями с растворами как в латеральных направлениях, так в вертикальном направлении, обеспечивая возможность опускать и извлекать рабочий электрод в/из растворов, находящихся в емкостях. В качестве устройства для управления режимом электроосаждения используют компьютер с программным обеспечением, способный непосредственно в процессе электроосаждения считывать ток, находить протекший заряд и ограничивать рост металла на каждой стадии как по заданному времени, так и по заданному заряду, обеспечивая точный контроль толщины слоев металла на уровне не хуже, чем 0,5 нм. Управление потенциалом электродов и управление положением электродов синхронизировано между собой.

Для получения слоистых нанопроводов с помощью предложенного аппарата последовательно выполняют следующие действия:

1) Погружение сборки электродов в электролит для осаждения первого металла. Выдержка электродов в растворе электролита в течение заданного программой времени, необходимого для проникновения электролита в поры рабочего электрода.

2) Поляризация электрода для начала процесса электроосаждения металла. Электроосаждение металла до достижения необходимой толщины слоя.

3) Выключение поляризации электрода. Извлечение сборки электродов из электролита и помещение ее в первый промывочный раствор.

4) Извлечение сборки электродов из первого промывочного раствора и помещение ее во второй промывочный раствор. Количество промывочных раствором может превышать 10 шт. и определяется заранее заданной программой.

5) Повторение пп. 1-4, с той лишь разницей, что сборка электродов погружается в другой электролит для электроосаждения следующего слоя металла. Количество слоев металла определяется количеством повторений цикла, включающего погружение сборки электродов в электролит, электроосаждение металла или сплава и последующую промывку электродов. При этом количество различных металлов в слоистой нанонити зависит от программы электроосаждения и количества используемых электролитов.

Сущность изобретения поясняется чертежами, графиками и микрофотографиями полученных нанопроводов, где на фиг. 1 представлена конструкция аппарата для электрохимического получения слоистых металлических нанопроводов; на фиг. 2 - конструкция сборки из трех электродов (рабочего, вспомогательного и электрода сравнения), являющейся составной частью аппарата; на фиг. 3 - режим электроосаждения слоистых нанопроводов, состоящих из двух чередующихся металлов; на фиг. 4 - микрофотография нанопровода с чередующимися слоями равной толщины из Ni и Au; на фиг. 5 - микрофотография слоистого Ni/Au нанопровода со сложным профилем состава.

Позициями на чертежах обозначены:

1 - консоль;

2 - ось для вращения держателя емкостей с растворами;

3 - шаговый двигатель;

4 - рейка вертикальная;

5 - сборка электродов;

6 - емкости с растворами электролитов и промывочными растворами;

7 - держатель емкостей с растворами;

8 - станина;

9 - электрод сравнения;

10 - вспомогательный электрод;

11 - уплотнительное кольцо;

12 - корпус рабочего электрода;

13 - токосъемник;

14 - крышка изолирующая;

15 - рабочий электрод;

16 - пористая пленка с протяженными каналами; 17-поршень.

Конструкционные решения и сущность заявляемого изобретения представлены на фиг. 1-5.

Изображенная на фиг. 1 конструкция аппарата для электрохимического получения слоистых металлических нанопроводов включает станину (8), на которой установлены держатель емкостей с растворами (7) и консоль (1). Емкости с растворами электролитов и промывочными растворами (6) располагаются в держателе (7) по кругу. Такая конструкция обеспечивает простоту замены электролитов путем вращения держателя (7) вокруг вертикальной оси (2). При смене электролита сборка электродов (5) сначала поднимается вверх из емкости с раствором вверх с помощью вертикальной рейки (4), соединенной через шестерню с валом шагового двигателя (3), закрепленного на консоли (1). После смены электролита сборка электродов опять опускается в раствор и к рабочему электроду прикладывается нужный потенциал.

Основным элементом аппарата является сборка электродов (5), чертеж которой приведен на фиг. 2. Все три электрода (электрод сравнения (9), вспомогательный электрод (10) и рабочий электрод (15)) скреплены между собой и перемещаются вверх и вниз при смене растворов как единое целое. Раствор электролита контактирует лишь с верхней стороной рабочего электрода, в качестве которого выступает металлизированная с одной стороны пористая пленка с протяженными преимущественно вертикальными каналами (16), так как пористая пленка закреплена в герметичном корпусе (12) рабочего электрода. С верхней стороны герметизация выполнена с помощью уплотнительного кольца (11). Снизу при сборке корпус герметично закрывается крышкой (14). Для подведения электрического тока к нижней металлизированной стороне пористой пленки к ней прижимается с помощью поршня (17) металлическая платина (13), выступающая в качестве токосъемника. Корпуса рабочего электрода и нижняя изолирующая крышка выполнены из фторопласта Ф4 (также известный как тефлон). Их материал, а также форма (конусообразная форма крышки, малая толщина бортика между пористой пленкой и верхней поверхностью корпуса) обеспечивают полное стекание электролита с рабочего электрода при его извлечении из раствора.

Одним из возможных режимов получения металлических слоистых нанопроводов является потенциостатическое темплатное электроосаждение с in situ контролем толщины осажденных слоев с помощью контроля протекшего электрического заряда. В случае формирования нанопроводов с чередующимися слоями из двух металлов график зависимости потенциала рабочего электрода от протекшего заряда представлен на фиг.3. Для демонстрации реализуемости предложенного подхода, а также работоспособности аппарата было проведено темплатное электроосаждение никеля и золота в каналы пористых пленок анодного оксида алюминия.

Электрокристаллизацию Au проводили из коммерческого электролита 04-ЗГ производства компании Экомет (г. Москва) с концентрацией Au 5-15 г/л. Для осаждения никеля использовали электролит состава 0,1 M NiCl2, 0,6 M NiSO4, 0,3 М Н3 ВО3. Кристаллизацию золота проводили при потенциале -1,0 В с предварительным 0,1 с импульсом при -1,2 В. Осаждение никеля проводили при потенциале -0,8 В с предварительным импульсом -1,2 В в течение 0,1 с. Потенциалы указаны относительно насыщенного Ag/AgCl электрода сравнения. При смене растворов после извлечения электродов из одного электролита их последовательно промывали в двух емкостях с деионизованной водой перед тем как опустить в другой электролит. Все перемещения выполнялись в автоматизированном режиме. Данные растровой электронной микроскопии для нанопроводов Ni/Au с постоянной толщиной сегментов и со сложным профилем состава вдоль длины нанопровода приведены на фиг. 4 и 5, соответственно. На данных изображениях светлые слои - Au, а более темные - слои Ni.


АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 33.
25.06.2020
№220.018.2b47

Измеритель интенсивности осадков по видеоизображению

Предложенное изобретение относится к метеорологическим приборам и может быть использовано для определения интенсивности осадков в системах видеонаблюдения, расположенных как на неподвижных, так и движущихся объектах. Измеритель интенсивности осадков по видеоизображению содержит видеокамеру,...
Тип: Изобретение
Номер охранного документа: 0002724298
Дата охранного документа: 22.06.2020
01.07.2020
№220.018.2d75

Цифровой регистрирующий модуль для подводных исследований

Изобретение относится в целом к геофизическим измерительным системам, а конкретно к сейсмическим технологиям сбора данных и датчикам. Изобретение способно одновременно регистрировать сейсмические и акустические сигналы, реализуя принцип разделения сейсмических волн в зависимости от направления...
Тип: Изобретение
Номер охранного документа: 0002724964
Дата охранного документа: 29.06.2020
12.04.2023
№223.018.4852

Четырехчастотный лазерный гироскоп зеемановского типа

Изобретение относится к области высокоточной лазерной гироскопии, а именно к лазерным гироскопам зеемановского типа. Четырехчастотный лазерный гироскоп имеет знакопеременную зеемановскую магнитооптическую частотную поставку для устранения явления захвата частот встречных волн и периодического...
Тип: Изобретение
Номер охранного документа: 0002731171
Дата охранного документа: 31.08.2020
12.04.2023
№223.018.48ec

Способ получения фотодекарбоксилаз жирных кислот

Изобретение относится к биотехнологии, в частности к получению ферментов фотодекарбоксилаз жирных кислот (ФЖК). Заявлен способ производства ФЖК с контролируемым связыванием белка с определенным кофактором с использованием рибофлавин-ауксотрофных штаммов Е. coll. Процесс проводят путем...
Тип: Изобретение
Номер охранного документа: 0002750455
Дата охранного документа: 28.06.2021
12.04.2023
№223.018.494d

Способ получения частиц на основе гематита для доставки генетических конструкций в клетку

Изобретение относится к области биомедицины и наномедицины, в частности к способу получения частицы на основе гематита для трансфекции нуклеиновой кислоты в клетку и способу доставки нуклеиновой кислоты в клетку с помощью указанной частицы. Для осуществления указанного способа получения сначала...
Тип: Изобретение
Номер охранного документа: 0002780664
Дата охранного документа: 28.09.2022
12.04.2023
№223.018.4961

Модифицированная генетическая конструкция для рекомбинантной экспрессии и кристаллизации человеческого cyslt1 рецептора

Изобретение относится к области биотехнологии, конкретно к рекомбинантному получению человеческого лейкотриенового рецептора типа 1 (human cysteinyl leikotriene receptor 1, CysLTR1), и может быть использовано для экспрессии CysLT1 рецептора. Предложена генетическая конструкция с нуклеотидной...
Тип: Изобретение
Номер охранного документа: 0002735281
Дата охранного документа: 29.10.2020
12.04.2023
№223.018.497d

Способ получения частиц для специфического таргетинга клеток

Изобретение относится к области биомедицины и наномедицины, в частности к способу получения частиц на основе гематита, способных специфически распознавать и связываться с клетками-мишенями. Для осуществления указанного способа сначала смешивают суспензию частиц ферригидрита с раствором кислоты,...
Тип: Изобретение
Номер охранного документа: 0002777103
Дата охранного документа: 01.08.2022
12.04.2023
№223.018.497e

Бактериальный lux-биосенсор с повышенной чувствительностью для детекции ацильных производных гомосерин лактона

Изобретение относится к бактериальным lux-биосенсорам для детекции субнаномолярных концентраций ацильных производных гомосерин лактона, а также к бактериальным lux-биосенсорам для детекции ацильных производных гомосерин лактона. Биосенсоры состоят из клеток , трансформированных парой плазмид,...
Тип: Изобретение
Номер охранного документа: 0002777196
Дата охранного документа: 01.08.2022
12.04.2023
№223.018.498b

Способ получения частиц гематита с помощью сильных минеральных кислот

Изобретение может быть использовано в биомедицине и наномедицине, в магнитно-резонансной томографии (МРТ). Способ получения частиц гематита включает смешение частиц ферригидрита с раствором по крайней мере одной кислоты и инкубацию полученной смеси при температуре не выше +4°С. Концентрация...
Тип: Изобретение
Номер охранного документа: 0002770641
Дата охранного документа: 19.04.2022
12.04.2023
№223.018.49d6

Устройство для исследования структурных и транспортных свойств мембран в условиях контролируемой температуры и влажности окружающей среды

Изобретение относится к научному приборостроению и представляет собой устройство, используемое при проведении ряда физико-химических исследований по изучению микроструктуры и проводимости образцов мембран, для которых критичны внешние условия эксперимента. Заявлено устройство для исследования...
Тип: Изобретение
Номер охранного документа: 0002752797
Дата охранного документа: 06.08.2021
Показаны записи 21-30 из 36.
09.06.2018
№218.016.5d28

Полевой эмиссионный элемент и способ его изготовления

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Полевой эмиссионный элемент содержит электропроводящую подложку 1, расположенный на ней диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002656150
Дата охранного документа: 31.05.2018
11.06.2018
№218.016.614e

Способ изготовления радиоприёмного устройства

Изобретение относится к способу изготовления радиоприемного устройства с применением углеродных нанотрубок. Технический результат заключается в повышении стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок. Способ изготовления радиоприемного...
Тип: Изобретение
Номер охранного документа: 0002657174
Дата охранного документа: 08.06.2018
01.07.2018
№218.016.695d

Способ измерения когерентного объема нейтронного пучка в установках малоуглового рассеяния нейтронов

Использование: для исследования структуры материалов с применением техники малоуглового рассеяния нейтронов. Сущность изобретения заключается в том, что стандартный калибрант, в качестве которого используют пористую мембрану-калибрант из анодного оксида алюминия, обладающую двумерной структурой...
Тип: Изобретение
Номер охранного документа: 0002659308
Дата охранного документа: 29.06.2018
12.07.2018
№218.016.70ad

Способ изготовления электрода суперконденсатора

Изобретение относится к электронной технике, в частности к способам изготовления суперконденсаторов. Способ изготовления электрода суперконденсатора заключается в нанесении на проводящую подложку буферного слоя, каталитического слоя, затем диэлектрического слоя, вскрытии в диэлектрическом слое...
Тип: Изобретение
Номер охранного документа: 0002660819
Дата охранного документа: 10.07.2018
02.08.2018
№218.016.77b0

Радиоприёмное устройство

Использование: для создания элементов и приборов радиоприемной аппаратуры. Сущность изобретения заключается в том, что радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на...
Тип: Изобретение
Номер охранного документа: 0002662908
Дата охранного документа: 31.07.2018
16.09.2018
№218.016.884d

Способ восстановления бандажных полок лопаток турбомашин из жаропрочных никелевых сплавов

Изобретение относится к области сварки и наплавки и может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из жаропрочных никелевых сплавов. Способ восстановления бандажных полок лопаток турбомашин из жаропрочных никелевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002667110
Дата охранного документа: 14.09.2018
23.10.2018
№218.016.9511

Электрод суперконденсатора

Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в...
Тип: Изобретение
Номер охранного документа: 0002670281
Дата охранного документа: 22.10.2018
26.01.2019
№219.016.b45f

Способ изготовления полевого эмиссионного элемента

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке...
Тип: Изобретение
Номер охранного документа: 0002678192
Дата охранного документа: 24.01.2019
11.03.2019
№219.016.d67a

Инсектоакарицидный состав для млекопитающего

Изобретение относится к области ветеринарной медицины, в частности к составам для борьбы с кожными паразитами млекопитающих. Предложен инсекто-акарицидный состав со следующим соотношением компонентов в мас.%: фипронил 0,3-5 мас.%, метопрен - до 1 мас.%, бензилбензоат 5-40 мас.%. Спиртовой...
Тип: Изобретение
Номер охранного документа: 0002283590
Дата охранного документа: 20.09.2006
11.03.2019
№219.016.dbce

Многослойный полимерно-текстильный материал и способ его получения

Изобретение относится к производству пластмасс и может быть использовано для изготовления герметичных надувных изделий. Материал в качестве текстильной основы содержит полиэфирную ткань, на поверхность которой вакуумным напылением осажден сплав, содержащий, мас.%: 68,2 Fe, 2,0 Mn, 11,6 Ni, 17,5...
Тип: Изобретение
Номер охранного документа: 0002453442
Дата охранного документа: 20.06.2012
+ добавить свой РИД