×
30.10.2019
219.017.dbb2

Результат интеллектуальной деятельности: АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для гальванического получения наноструктур. Аппарат для автоматизированного получения слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси включает набор емкостей с растворами электролитов и промывочными растворами, электроды, источник постоянного тока и устройство для управления режимом электроосаждения, при этом аппарат содержит моторизованное устройство для перемещения электродов относительно основания, на котором размещены емкости с растворами, обеспечивая формирование металлических слоев различного состава, при этом рабочий электрод представляет собой пористую пленку с цилиндрическими каналами, обеспечивающую условия для роста нанопроводов за счет ограничения направлений роста металла стенками пор. Предложенный аппарат позволяет получать нанопровода с четкой границей между соседними слоями. Процесс электроосаждения автоматизирован, обеспечивая возможность воспроизводимого получения слоев заданной толщины, причем их количество в единичном нанопроводе может превышать 1000 шт. 11 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для гальванического получения наноструктур, а более конкретнее, слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси. Нанопровода, изготовленные с помощью данного изобретения перспективны для создания элементной базы наноэлектроники, в том числе сверхпроводящей.

Известны различные способы изготовления субмикронных джозефсоновских структур, в основе которых лежат технологии послойного напыления тонких пленок сверхпроводников, барьеров и функциональных слоев на диэлектрическую подложку и формирования их топологии методами плазменного или химического травления и электроннолучевой или фотолитографии. Структуры джозефсона, в свою очередь разделяются на два основных типа: сэндвичевые и планарные, что обусловлено способами их изготовления. Нерешенной на сегодняшний день проблемой является уменьшение джозефсоновских структур до субмикронного уровня для их интеграции в электрические цепи с высокой плотностью упаковки активных элементов.

Известно, что использование планарных структур и нанопроводов в качестве линий для протекания сверхпроводящего тока повышает характеристические параметры элементов электрических цепей по сравнению с сэндвичевыми - микронными в XY направлениях структурах [Skryabina O.V., Egorov S.V., Goncharova A.S., et al., Applied Physics Letters ПО (2017) 222605]. Поэтому способ изготовления субмикронных систем на единичном нанопроводе в первую очередь характеризуется тем, что привычный сэндвичевый (послойный) объект может быть создан новым способом, в новой "планарно-сэндвичевой" топологии [Патент RU №2599904 29.06.2015 г. B.C. Столяров «Способ изготовления устройства с субмикронным джозефсоновским π-контактом»], что позволит изготовить его с субмикронными размерами, как по толщине слоя (направление-Z), так и в латеральных направлениях X и Y. Для этого изготавливается многослойный нанопровод с чередующимися слоями, например: нормальный металл - ферромагнетик - нормальный металл -ферромагнетик… и так далее. При этом диаметр нанопровода будет определять латеральные размеры ферромагнитной прослойки и может варьироваться от 30 до 300 нм. Участки провода могут быть выполнены из Сu, Au, Pd и других проводящих материалов. Затем, такой многослойный провод, горизонтальным образом (то есть планарно), помещается на подложку, где к нему подводятся контакты методами литографии и напыления. Ключевым моментом при создании гибридных джозефсоновских контактов с использованием единичных нанопроводов в качестве элемента слабой связи является технология получения сегментированных (или слоистых) нанопроводов субмикронного диаметра.

Перспективным методом получения сегментированных нанопроводов является темплатное электроосаждение металлов с применением в качестве матриц пористых материалов с цилиндрическими каналами (например, пористые пленки анодного оксида алюминия, трековые мембраны).

Существует два способа формирования сегментированных наноструктур, состоящих из чередующихся слоев А и В:1) из смешанного электролита, чередуя условия осаждения; 2) из индивидуальных электролитов, циклически меняя раствор и условия электрокристаллизации [Mieszawska A.J., Jalilian R., Sumanasekera G.U., Zamborini F.P., Small 3 (2007) 722]. При осаждении из смешанного электролита невозможно получить слои из чистого менее благородного металла, находящегося в растворе одновременно с ионами более благородного металла. Кроме того, из смешанного электролита проблематично выращивание протяженных сегментов из более благородного металла, из-за малой концентрации ионов этого металла в растворе электролита. Решить эту проблему возможно с использованием второго способа - осаждения слоев из индивидуальных электролитов. Главным недостатком данного метода является трудоемкость и, как следствие, низкая технологичность. Важно отметить, что данная методика, помимо прочего, позволяет осаждать сегменты, используя несовместимые между собой электролиты.

В последнее время большое распространение получили станки с числовым программным управлением. Автоматизация процесса изготовления существенно увеличивает количество годных деталей и уменьшает долю ручного труда. Одним из типов таких станков являются 3D принтеры, которые активно используются в современной технологии. Отличие от традиционных фрезерных и токарных станков заключается в том, что с помощью 3D печати требуемая деталь создается по подходу снизу вверх, а не сверху вниз. При этом принцип позиционирования головного устройства остается одинаковым. В рамках настоящего изобретения разработана конструкция аппарата для электрохимического получения слоистых металлических нанопроводов методом темплатного электроосаждения, меняя состав электролита и условия осаждения в автоматическом режиме по заранее заданной программе.

Известен способ получения слоистых гальванических покрытий в автоматизированном режиме, выбранный в качестве наиболее близкого аналога (прототипа), описание которого представлено в патенте [Патент RU №2555272 21.10.2013 г. П.А. Тихонов и др. «Электрохимический роботизированный комплекс для формирования наноразмерных покрытий»]. В данном решении автоматизация процесса смены электролита, а также контроль толщины формирующихся слоев позволяют создавать многослойные пленки с контролируемой последовательностью слоев. Однако конструкция используемых электродов не предполагает возможность формирования нанопроводов.

Задачей настоящего изобретения является усовершенствование конструкции гальванических устройств, предназначенных для электроосаждения металлических наноструктур.

Технический результат, достигаемый в заявляемом изобретении, заключается в появлении возможности воспроизводимого формирования металлических нанопроводов со слоистой структурой и четкой границей между слоями.

Поставленная задача решается тем, что для получения слоистых нанопроводов используется аппарат, позволяющий проводить электроосаждение металлов в трехэлектродной конфигурации, последовательно меняя состав раствора электролита в автоматизированном режиме по заранее заданной программе.

Заявляемый аппарат для электрохимического получения слоистых металлических нанопроводов включает набор емкостей с растворами электролитов и промывочными растворами, электроды, источник постоянного тока и устройство для управления режимом электроосаждения, а также моторизованное устройство для перемещения электродов относительно основания, на котором размещены емкости с растворами, выполненное с возможностью по заданной программе переносить электроды из емкости в емкость от 2 до 10000 раз и выдерживать их в растворе электролита в течение интервала времени от 0,1 до 10000 секунд, требуемого для электроосаждения слоя металла толщиной от 0,1 до 5000 нм, обеспечивая формирование металлических слоев различного состава, при этом рабочий электрод представляет собой пористую пленку с цилиндрическими каналами, обеспечивающую условия для роста нанопроводов за счет ограничения направлений роста металла стенками пор.

Наилучший вариант реализации изобретения достигается когда аппарат содержит три электрода - рабочий электрод, электрод сравнения и вспомогательный электрод, обеспечивая возможность проводить электроосаждение металлов и/или их сплавов в трехэлектродной конфигурации с точным контролем потенциала осаждения. При этом все три электрода объединены в сборку, которая перемещается целиком при перемещении рабочего электрода между емкостями.

В качестве пористой пленки в рабочем электроде выступает трековая мембрана или пленка анодного оксида алюминия толщиной от 1 до 200 мкм со сквозными порами с диметром от 10 до 500 нм. Пористая пленка ограничивает рост металла в определенных направлениях и задает геометрические параметры массива формирующихся нанопроводов. С одной стороны она покрыта сплошным слоем инертного металла. В качестве металла, покрывающего пористую пленку с одной стороны, используют медь, никель, серебро, золото, платину, а также их сплавы. Доступ электролита в поры пленки, ограничивающей рост металла, реализован лишь с одной стороны, исключая возможность роста металла где бы то ни было, кроме как в порах пленки, и создавая условия для роста в результате гальванического осаждения наноструктур исключительно в виде нанопроводов.

В качестве источника постоянного тока используется потенциостат. Емкости могут содержать как электролиты для осаждения металлов, так и растворы для промывки и предварительной подготовки поверхности, а количество емкостей с растворами может достигать 200 шт. Моторизованное устройство для перемещения рабочего электрода реализовано на основе шаговых двигателей и позволяет перемещать рабочий электрод относительно основания аппарата с емкостями с растворами как в латеральных направлениях, так в вертикальном направлении, обеспечивая возможность опускать и извлекать рабочий электрод в/из растворов, находящихся в емкостях. В качестве устройства для управления режимом электроосаждения используют компьютер с программным обеспечением, способный непосредственно в процессе электроосаждения считывать ток, находить протекший заряд и ограничивать рост металла на каждой стадии как по заданному времени, так и по заданному заряду, обеспечивая точный контроль толщины слоев металла на уровне не хуже, чем 0,5 нм. Управление потенциалом электродов и управление положением электродов синхронизировано между собой.

Для получения слоистых нанопроводов с помощью предложенного аппарата последовательно выполняют следующие действия:

1) Погружение сборки электродов в электролит для осаждения первого металла. Выдержка электродов в растворе электролита в течение заданного программой времени, необходимого для проникновения электролита в поры рабочего электрода.

2) Поляризация электрода для начала процесса электроосаждения металла. Электроосаждение металла до достижения необходимой толщины слоя.

3) Выключение поляризации электрода. Извлечение сборки электродов из электролита и помещение ее в первый промывочный раствор.

4) Извлечение сборки электродов из первого промывочного раствора и помещение ее во второй промывочный раствор. Количество промывочных раствором может превышать 10 шт. и определяется заранее заданной программой.

5) Повторение пп. 1-4, с той лишь разницей, что сборка электродов погружается в другой электролит для электроосаждения следующего слоя металла. Количество слоев металла определяется количеством повторений цикла, включающего погружение сборки электродов в электролит, электроосаждение металла или сплава и последующую промывку электродов. При этом количество различных металлов в слоистой нанонити зависит от программы электроосаждения и количества используемых электролитов.

Сущность изобретения поясняется чертежами, графиками и микрофотографиями полученных нанопроводов, где на фиг. 1 представлена конструкция аппарата для электрохимического получения слоистых металлических нанопроводов; на фиг. 2 - конструкция сборки из трех электродов (рабочего, вспомогательного и электрода сравнения), являющейся составной частью аппарата; на фиг. 3 - режим электроосаждения слоистых нанопроводов, состоящих из двух чередующихся металлов; на фиг. 4 - микрофотография нанопровода с чередующимися слоями равной толщины из Ni и Au; на фиг. 5 - микрофотография слоистого Ni/Au нанопровода со сложным профилем состава.

Позициями на чертежах обозначены:

1 - консоль;

2 - ось для вращения держателя емкостей с растворами;

3 - шаговый двигатель;

4 - рейка вертикальная;

5 - сборка электродов;

6 - емкости с растворами электролитов и промывочными растворами;

7 - держатель емкостей с растворами;

8 - станина;

9 - электрод сравнения;

10 - вспомогательный электрод;

11 - уплотнительное кольцо;

12 - корпус рабочего электрода;

13 - токосъемник;

14 - крышка изолирующая;

15 - рабочий электрод;

16 - пористая пленка с протяженными каналами; 17-поршень.

Конструкционные решения и сущность заявляемого изобретения представлены на фиг. 1-5.

Изображенная на фиг. 1 конструкция аппарата для электрохимического получения слоистых металлических нанопроводов включает станину (8), на которой установлены держатель емкостей с растворами (7) и консоль (1). Емкости с растворами электролитов и промывочными растворами (6) располагаются в держателе (7) по кругу. Такая конструкция обеспечивает простоту замены электролитов путем вращения держателя (7) вокруг вертикальной оси (2). При смене электролита сборка электродов (5) сначала поднимается вверх из емкости с раствором вверх с помощью вертикальной рейки (4), соединенной через шестерню с валом шагового двигателя (3), закрепленного на консоли (1). После смены электролита сборка электродов опять опускается в раствор и к рабочему электроду прикладывается нужный потенциал.

Основным элементом аппарата является сборка электродов (5), чертеж которой приведен на фиг. 2. Все три электрода (электрод сравнения (9), вспомогательный электрод (10) и рабочий электрод (15)) скреплены между собой и перемещаются вверх и вниз при смене растворов как единое целое. Раствор электролита контактирует лишь с верхней стороной рабочего электрода, в качестве которого выступает металлизированная с одной стороны пористая пленка с протяженными преимущественно вертикальными каналами (16), так как пористая пленка закреплена в герметичном корпусе (12) рабочего электрода. С верхней стороны герметизация выполнена с помощью уплотнительного кольца (11). Снизу при сборке корпус герметично закрывается крышкой (14). Для подведения электрического тока к нижней металлизированной стороне пористой пленки к ней прижимается с помощью поршня (17) металлическая платина (13), выступающая в качестве токосъемника. Корпуса рабочего электрода и нижняя изолирующая крышка выполнены из фторопласта Ф4 (также известный как тефлон). Их материал, а также форма (конусообразная форма крышки, малая толщина бортика между пористой пленкой и верхней поверхностью корпуса) обеспечивают полное стекание электролита с рабочего электрода при его извлечении из раствора.

Одним из возможных режимов получения металлических слоистых нанопроводов является потенциостатическое темплатное электроосаждение с in situ контролем толщины осажденных слоев с помощью контроля протекшего электрического заряда. В случае формирования нанопроводов с чередующимися слоями из двух металлов график зависимости потенциала рабочего электрода от протекшего заряда представлен на фиг.3. Для демонстрации реализуемости предложенного подхода, а также работоспособности аппарата было проведено темплатное электроосаждение никеля и золота в каналы пористых пленок анодного оксида алюминия.

Электрокристаллизацию Au проводили из коммерческого электролита 04-ЗГ производства компании Экомет (г. Москва) с концентрацией Au 5-15 г/л. Для осаждения никеля использовали электролит состава 0,1 M NiCl2, 0,6 M NiSO4, 0,3 М Н3 ВО3. Кристаллизацию золота проводили при потенциале -1,0 В с предварительным 0,1 с импульсом при -1,2 В. Осаждение никеля проводили при потенциале -0,8 В с предварительным импульсом -1,2 В в течение 0,1 с. Потенциалы указаны относительно насыщенного Ag/AgCl электрода сравнения. При смене растворов после извлечения электродов из одного электролита их последовательно промывали в двух емкостях с деионизованной водой перед тем как опустить в другой электролит. Все перемещения выполнялись в автоматизированном режиме. Данные растровой электронной микроскопии для нанопроводов Ni/Au с постоянной толщиной сегментов и со сложным профилем состава вдоль длины нанопровода приведены на фиг. 4 и 5, соответственно. На данных изображениях светлые слои - Au, а более темные - слои Ni.


АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
АППАРАТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ НАНОПРОВОДОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 33.
19.10.2019
№219.017.d849

Способ изготовления молекулярно-электронной ячейки низкошумящего широкополосного гидрофона для донных исследований

Изобретение относится к измерительной технике. Предлагаемый способ изготовления молекулярно-электронной ячейки для гидрофона позволяет обеспечить измерение слабых низкочастотных сейсмических и акустических сигналов, распространяющихся в жидких, твердых и газообразных средах. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703488
Дата охранного документа: 17.10.2019
30.10.2019
№219.017.dbab

Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Группа изобретений относится к аддитивному изготовлению объемных микроразмерных структур из наночастиц путем спекания наночастиц на подложке. Получают поток аэрозоля с наночастицами в импульсно-периодическом газовом разряде в потоке транспортного газа, затем производят нагрев аэрозоля с...
Тип: Изобретение
Номер охранного документа: 0002704358
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dca7

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде может быть использован для повышения электрического...
Тип: Изобретение
Номер охранного документа: 0002704566
Дата охранного документа: 29.10.2019
27.11.2019
№219.017.e6ec

Инфракрасный детектор и способ его изготовления

Изобретение относится к области измерительной техники и касается инфракрасного детектора ИК-диапазона. Инфракрасный детектор включает в себя активный слой, содержащий коллоидные квантовые точки и плазмонные наноантенны, расположенные между встречно-штыревыми электродами. При этом при...
Тип: Изобретение
Номер охранного документа: 0002707202
Дата охранного документа: 25.11.2019
19.12.2019
№219.017.ef24

Оптический смеситель излучения четырехчастотного лазерного гироскопа зеемановского типа

Изобретение относится к области высокоточной лазерной гироскопии, а именно к детектированию сигналов четырехчастотного лазерного гироскопа зеемановского типа. Оптический смеситель служит для формирования сигнала четырехчастотного лазерного гироскопа зеемановского типа и имеет функцию...
Тип: Изобретение
Номер охранного документа: 0002709428
Дата охранного документа: 17.12.2019
07.06.2020
№220.018.253d

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения...
Тип: Изобретение
Номер охранного документа: 0002722961
Дата охранного документа: 05.06.2020
12.06.2020
№220.018.26a4

Способ аддитивного изготовления объемных микроразмерных структур из наночастиц

Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы...
Тип: Изобретение
Номер охранного документа: 0002723341
Дата охранного документа: 09.06.2020
25.06.2020
№220.018.2b0c

Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот

Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации...
Тип: Изобретение
Номер охранного документа: 0002724303
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b0f

Молекулярно-электронный гидрофон с компенсацией статического давления

Изобретение относится к акустической метрологии. Молекулярно-электронный гидрофон с компенсацией статического давления содержит молекулярно-электронный преобразователь, жестко закрепленный внутри герметичного корпуса, заполненного легкосжимаемой жидкостью и разделенного на две камеры жесткой...
Тип: Изобретение
Номер охранного документа: 0002724296
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b26

Преобразующий элемент молекулярно-электронного преобразователя диффузионного типа

Изобретение относится к измерительной технике в частности к чувствительным элементам (электродным узлам) молекулярно-электронных преобразователей диффузионного типа. Сущность изобретения заключатся в том, что в преобразующем элементе молекулярно-электронного преобразователя диффузионного типа,...
Тип: Изобретение
Номер охранного документа: 0002724297
Дата охранного документа: 22.06.2020
Показаны записи 11-20 из 36.
20.05.2015
№216.013.4b9d

Штамп для морфологической модификации полимеров, способ его получения и способ формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием

Изобретение относится к области нанотехнологий и касается штампа для морфологической модификации полимеров, способа его получения и способа формирования супергидрофильных и супергидрофобных самоочищающихся покрытий с его использованием. Штамп представляет собой пленку пористого анодного оксида...
Тип: Изобретение
Номер охранного документа: 0002550871
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daf

Способ усилинения магнитооптического эффекта керра с помощью фотоннокристаллических структур

Изобретение относится к области магнитофотоники. Способ усиления магнитооптического эффекта Керра путем формирования магнитного фотонного кристалла с периодически структурированной поверхностью магнетика, при котором морфология поверхности магнитного фотонного кристалла определяется уровнем...
Тип: Изобретение
Номер охранного документа: 0002551401
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.5d11

Способ получения анодного оксида алюминия с высокоупорядоченной пористой структурой и способ формирования массивов анизотропных наноструктур на его основе

Изобретение относится к способу получения пористой пленки с высокоупорядоченной системой пор, образующих строгую гексагональную решетку, а также к способу формирования высокоупорядоченных массивов анизотропных структур. В качестве исходного материала для осуществления способа получения пористой...
Тип: Изобретение
Номер охранного документа: 0002555366
Дата охранного документа: 10.07.2015
10.08.2016
№216.015.55d0

Планарный термокаталитический сенсор горючих газов и паров

Использование: для газового анализа горючих газов и паров. Сущность изобретения заключается в том, что микрочип планарного термокаталитического сенсора горючих газов и паров состоит из общей, для рабочего и сравнительного чувствительных элементов, пористой подложки из анодного оксида алюминия с...
Тип: Изобретение
Номер охранного документа: 0002593527
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.7fde

Способ изготовления устройства с субмикронным джозефсоновским π-контактом

Использование: для изготовления устройства с субмикронным джозефсоновским π-контактом. Сущность изобретения заключается в том, что способ изготовления устройства с субмикронным джозефсоновским π-контактом заключается в том, что в качестве слабой связи джозефсоновского перехода используют...
Тип: Изобретение
Номер охранного документа: 0002599904
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.ab54

Способ изготовления моноколеса гтд из заготовки с обнаруженными при её обработке дефектами

Изобретение относится к авиационной промышленности и может быть использовано для изготовления моноколес турбомашин. Способ включает последовательную черновую обработку концевыми фрезами верхних, средних и концевых участков лопаток и дальнейшую их чистовую обработку. При этом после проведения...
Тип: Изобретение
Номер охранного документа: 0002612108
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ce47

Способ формирования цветного декоративного покрытия с помощью анодирования

Изобретение относится к технологии получения декоративных покрытий при окраске металлических изделий в различные цвета и создания высокотехнологичных оптоэлектронных устройств с применением элементов, способных отражать или пропускать свет с определенной настраиваемой длиной волны. Способ...
Тип: Изобретение
Номер охранного документа: 0002620801
Дата охранного документа: 29.05.2017
20.01.2018
№218.016.1674

Катализатор окисления горючих газов, способ его получения и способ синтеза соединения-предшественника, содержащего иридий

Изобретение относится к катализатору окисления горючих газов. Катализатор содержит наночастицы соединений благородных металлов, таких как платина, палладий и иридий, с мольным соотношением элементов (Pt+Pd):Ir, равным 1:x, где x изменяется в диапазоне от 0,02 до 0,67, нанесенных на пористый...
Тип: Изобретение
Номер охранного документа: 0002635111
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.1f29

Способ нанесения износостойкого покрытия на бандажную полку лопатки турбомашин из никелевых сплавов

Изобретение относится к области сварки и может быть использовано при производстве или ремонте бандажированных лопаток турбин турбомашин, выполненных из жаропрочных никелевых сплавов. Выполняют бандажную полку лопатки турбины. Наносят на подготовленную к наплавке контактную поверхность бандажной...
Тип: Изобретение
Номер охранного документа: 0002641210
Дата охранного документа: 16.01.2018
04.04.2018
№218.016.318f

Способ формирования эмитирующей поверхности автоэмиссионных катодов

Изобретение относится к способам изготовления автоэмиссионных катодов с применением углеродных нанотрубок и может быть использовано для изготовления элементов и приборов вакуумной микро- и наноэлектроники. Способ включает осаждение на подложку электропроводящего буферного слоя, осаждение...
Тип: Изобретение
Номер охранного документа: 0002645153
Дата охранного документа: 16.02.2018
+ добавить свой РИД