×
26.10.2019
219.017.dada

Результат интеллектуальной деятельности: СПОСОБ ЗАРЯДКИ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ ИЗ N ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ АККУМУЛЯТОРОВ С ПОДКЛЮЧЕННЫМИ К НИМ ЧЕРЕЗ КОММУТАТОРЫ БАЛАНСИРОВОЧНЫМИ РЕЗИСТОРАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к способу заряда литий-ионных аккумуляторных батарей, и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей, преимущественно, в качестве элементов питания электротранспортных средств и накопителей интеллектуальных сетей энергоснабжения. Способ заряда литий-ионного накопителя из n-последовательно соединенных ячеек с использованием пассивного метода балансировки осуществляется путем разряда на балластные сопротивления, при этом процесс зарядки прекращают при достижении одной из ячеек порогового максимального напряжения, также задается диапазон, который определяет продолжительность последующего разряда выбранных аккумуляторов до момента совпадения уровня с текущим напряжением аккумуляторов, когда происходит отключение балансировочного резистора, при этом цикл балансировки завершают отключением последнего из включенных балансировочных резисторов. Кроме того, в предложенном способе количество циклов балансировки определяется моментом, при котором очередное отключении заряда по достижении напряжений любого из заданного максимального значения не сопровождается подключением балансировочного резистора. Повышение эффективности использования многоэлементной последовательно соединенной аккумуляторной батареи за счет уменьшения разницы между максимальным и минимальным напряжением среди всех последовательно соединенных аккумуляторных ячеек по окончании заряда, является техническим результатом изобретения. 1 з.п. ф-лы, 1 ил.

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей, преимущественно, в автономных системах электропитания мобильных систем.

Известны литий-ионные аккумуляторные батареи и способы их заряда, заключающиеся в контроле напряжения аккумуляторов и ограничении заряда по максимальной величине напряжения аккумуляторов и описанные в книге А.А. Таганова, Ю.И. Бубнова, С.Б. Орлова «Герметичные химические источники тока. Элементы и аккумуляторы. Оборудование для испытаний и эксплуатации». Санкт-Петербург: Химиздат, 2005 г., глава 5, 7, а также в патенте Виссемборски Рюдигер (DE), Бюлер Гуннар (DE), Маркманн Йоахим (DE), Кюммет Давид (DE) «ОРТОФОСФАТ ЖЕЛЕЗА(III) ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ» (2C 5849742 UR).

Недостатком описанных способов является то, что они не решают вопроса повышения эффективности использования многоэлементной литий-ионной аккумуляторной батареи при длительной ее эксплуатации.

Наиболее близким техническим решением является способ заряда литий-ионной аккумуляторной батареи из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторами, заключающийся в контроле напряжения аккумуляторов и отключении заряда по достижении напряжением любого из аккумуляторов заданного максимального значения, отличающийся тем, что при включении заряда выбирают аккумулятор с наименьшим текущим напряжением, а к остальным аккумуляторам подключают балансировочные резисторы на время, индивидуальное для каждого аккумулятора и пропорциональное величине его разбаланса по напряжению относительно выбранного аккумулятора с наименьшим текущим напряжением (Способ заряда литий-ионной аккумуляторной батареи из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторам, RU 2479894 С2, разработки авторов Коротких Виктор Владимирович (RU), Нестеришин Михаил Владленович (RU), Опенько Сергей Иванович (RU), патентообладателя: Открытое акционерное общество «Информационные спутниковые системы имени академика М.Ф. Решетнёва» (RU)).

Данный способ заряда литий-ионной аккумуляторной батареи заключается в том, что время ti подключения резистора к каждому аккумулятору рассчитывают исходя из соотношения ti=(1-Umin/Ui)*k*R, где Umin - наименьшее текущее напряжение аккумулятора в аккумуляторной батарее, B; Ui - напряжение i-го аккумулятора из числа оставшихся, В; k - коэффициент пересчета разницы напряжений аккумуляторов в емкость разбаланса, А*ч/В; R - сопротивление балансировочных резисторов, Ом.

Этот способ принят за прототип заявляемого изобретения.

Недостатком известного способа заряда литий-ионной аккумуляторной батареи является то, что проведение балансировки аккумуляторов по предложенному алгоритму при эксплуатации тяговых литий-железо-фосфатных аккумуляторных ячеек повлечет за собой значительные потери энергии и неэффективное использование временных ресурсов, вследствие продолжительной стадии балансировки.

Техническая проблема заявляемого изобретения заключается в необходимости повышения эффективности использования и упрощения эксплуатации тяговой литий-ионной аккумуляторной батареи.

Поставленная проблема решается тем, что при проведении заряда литий-ионной аккумуляторной батареи из n последовательно соединенных аккумуляторов с подключенными к ним через ключи балансировочными резисторами, с контролем напряжения аккумуляторов и ограничением заряда по достижению напряжения любой из ячеек аккумуляторной заданного максимального значения, при включении балансировки выбирают аккумуляторы с текущим напряжением, превышающим минимальное напряжение среди аккумуляторов на задаваемую уставку. К этим аккумуляторам подключают балансировочные резисторы до тех пор, пока их напряжение не окажется в задаваемом диапазоне, т.е. будет удовлетворять условию:

Ui≤Umin+∂,

где Umin - наименьшее текущее напряжение аккумулятора в аккумуляторной батарее, B; Ui - напряжение i-го аккумулятора, В; ∂ - задаваемая уставка, В.

Действительно, вследствие различия внутренних свойств отдельных аккумуляторов при эксплуатации многоэлементной последовательно соединенной аккумуляторной батареи некоторые ячейки будут заряжаться быстрее, достигая критического максимального напряжения, в то время как несколько аккумуляторов значительно не достигнут заряженного состояния. При разряде на этих нескольких элементах критическое минимальное напряжение достигается быстрее, в то время как напряжение на остальных ячейках накопителя будет далеко от критического минимального напряжения. Это приведет к недоиспользованию ресурсов аккумулятора. Задачей является уменьшение разницы между максимальным и минимальным напряжением среди всех последовательно соединенных аккумуляторных ячеек по окончании заряда.

Для реализации этой проблемы в процессе заряда многоэлементной аккумуляторной батареи по достижении какой-либо аккумуляторной ячейки максимального критического напряжения необходимо запускать стадию балансировки ячеек. Стадия балансировки представляет собой подключение балластного сопротивления к ячейкам, напряжение на которых превышает минимальное напряжение среди ячеек на задаваемый диапазон. Процесс балансировки прекращается после того, как буду отсутствовать ячейки с напряжением, превышающим минимальное напряжение среди ячеек на задаваемый диапазон. В этом случае запускается стадия зарядки. Процесс заряда батареи продолжается до тех пор, пока по завершении стадии заряда стадия балансировки не запустится, вследствие отсутствия ячеек с напряжением, превышающим минимальное напряжение среди ячеек на заданный диапазон.

Изобретение поясняется чертежом, на котором приведена упрощенная функциональная схема, поясняющая работу по предлагаемому способу.

Для реализации заявляемого способа предложено устройство, содержащее аккумуляторную батарею 1, модуль балансировки 2, устройство контроля 3, зарядное устройство 4, датчик тока 5, силовой контактор 6.

При этом, аккумуляторная батарея состоит из последовательно соединенных ячеек, к которым посредством ключей 2-2 подключаются балластные резисторы 2-1.

Параллельно аккумуляторной батарее подключено устройство контроля 3 и зарядное устройство 4. В цепи заряда аккумуляторной батареи установлен датчик тока 5 и силовой контактор 6.

Устройство контроля собирает информацию о напряжениях на ячейках аккумуляторной батареи 1, величине тока, протекающего через датчик тока 5. Устройство контроля осуществляет управление подключением балластных резисторов 2-1 к ячейкам аккумуляторной батареи 1 по средствам ключей 2-2, подключением зарядного устройства 4 к аккумуляторной батареи 1 посредством силового контактора 6.

Способ осуществляют следующим образом. В процессе заряда аккумуляторной батареи 1 устройство контроля 3 замыкает силовой контактор 6, получает информацию о состоянии параметров заряда от зарядного устройства 4 и датчика тока 5, осуществляет контроль напряжений на ячейках аккумуляторной батареи 1. По достижении одной из ячеек заданного напряжения устройство контроля 3 отключает зарядное устройство 4 от аккумуляторной батареи 1 посредством силового контактора 6 и подключает балластные резисторы 2-1 через соответствующие ключи 2-2 к ячейкам, напряжение на которых превышает минимальное напряжение среди всех ячеек на заданный диапазон. По завершении стадии балансировки устройство контроля 3 подключает зарядное устройство 4 к аккумуляторной батарее 1 посредством силового контактора 6. Количество аккумуляторов с подключенными балансировочными резисторами определяют в соответствии с уровнем их напряжений, превышающим значение суммы напряжения аккумулятора с наименьшим текущим напряжением и задаваемым диапазоном, который определяет продолжительность последующего разряда выбранных аккумуляторов до момента совпадения этого уровня с текущим напряжением аккумуляторов, когда происходит отключение балансировочного резистора, при этом цикл балансировки завершают отключением последнего из включенных балансировочных резисторов. Количество циклов балансировки определяют моментом, когда при очередном отключении заряда по достижении напряжений любого из них заданного максимального значения не происходит ни одного подключения балансировочного резистора.

Пример практической реализации с решением проблемы.

Предложенный способ зарядки многоэлементного литий-ионного аккумулятора с процессом балансировки был применен для зарядки накопителя энергии электротранспортного средства напряжением 48 В и емкостью 300 Ач, состоящего из 15 аккумуляторных ячеек. Применение разработки свидетельствует об улучшении эксплуатационных характеристик накопителя в среднем на 8-10%.


СПОСОБ ЗАРЯДКИ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ ИЗ N ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ АККУМУЛЯТОРОВ С ПОДКЛЮЧЕННЫМИ К НИМ ЧЕРЕЗ КОММУТАТОРЫ БАЛАНСИРОВОЧНЫМИ РЕЗИСТОРАМИ
СПОСОБ ЗАРЯДКИ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ ИЗ N ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ АККУМУЛЯТОРОВ С ПОДКЛЮЧЕННЫМИ К НИМ ЧЕРЕЗ КОММУТАТОРЫ БАЛАНСИРОВОЧНЫМИ РЕЗИСТОРАМИ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 164.
13.02.2018
№218.016.23f5

Способ устройства подземных резервуаров

Изобретение относится к строительству, а именно к устройству подземных резервуаров, преимущественно для хранения сжиженных газов. Способ устройства подземных резервуаров заключается в рытье котлована под резервуар, установке фундамента, установке резервуара в котлован и креплении его к...
Тип: Изобретение
Номер охранного документа: 0002642587
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e13

Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (абхм)

Изобретение относится к энергетике. В способе работы воздушно-аккумулирующей газотурбинной электростанции (ВАГТЭ) с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) в период спада электрической нагрузки сжатый, предварительно охлажденный в промежуточном охладителе воздух добавочно...
Тип: Изобретение
Номер охранного документа: 0002643878
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3966

Способ работы воздушно-аккумулирующей газотурбинной электростанции

Изобретение относится к теплоэнергетике. Способ работы воздушно-аккумулирующей газотурбинной электростанции характеризуется тем, что уходящие газы после газовой турбины поступают в котел-утилизатор, который входит в состав дополнительно установленного утилизационного контура. Одну часть...
Тип: Изобретение
Номер охранного документа: 0002647013
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3a42

Способ определения относительного размера синхронного кластера в сети по ее макропараметрам

Изобретение относится к области цифровой обработки и анализа данных. Технический результат заключается в расширении арсенала технических средств определения относительных размеров отдельных синхронных кластеров сложной сети. Способ определения относительных размеров синхронных кластеров сетей...
Тип: Изобретение
Номер охранного документа: 0002647677
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b4b

Сорбционно-флуоресцентный способ количественного определения содержания полициклических ароматических углеводородов в водных растворах

Изобретение относится к аналитической химии и может быть использовано для количественного определения содержания полициклических ароматических углеводородов (ПАУ) в водных средах. Способ количественного определения содержания ПАУ в водных растворах включает добавление диметилсульфоксида (ДМСО)...
Тип: Изобретение
Номер охранного документа: 0002647475
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3c4a

Способ работы компрессорной станции магистральных газопроводов

Способ работы компрессорной станции магистральных газопроводов, газоперекачивающие агрегаты которой оснащены комбинированным типом привода - электроприводным и газотурбинным, характеризуется тем, что при падении электрической нагрузки общей энергосистемы для газоперекачивающих агрегатов в...
Тип: Изобретение
Номер охранного документа: 0002647742
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3d05

Способ формирования титановых пористых покрытий на титановых имплантатах

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную...
Тип: Изобретение
Номер охранного документа: 0002647968
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3d79

Композиция на основе эпоксидной диановой смолы

Изобретение предназначено для использования в таких отраслях, как строительство, в качестве наливных бесшовных полов, в машиностроении, ракетно-космической технике, для обеспечения пожарной безопасности, защитных покрытий, имеющих повышенную деформационную стойкость. Композиция включает...
Тип: Изобретение
Номер охранного документа: 0002648069
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.3dd4

Способ изготовления электрически изолированных резисторов микросхем

Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью. Технический результат заключается в увеличении термостабильности и повышении пробивного напряжения изолирующих слоев...
Тип: Изобретение
Номер охранного документа: 0002648295
Дата охранного документа: 23.03.2018
+ добавить свой РИД