×
24.10.2019
219.017.da8f

Результат интеллектуальной деятельности: Способ контроля излучения нескольких источников частотно-неразделимых сигналов

Вид РИД

Изобретение

№ охранного документа
0002704027
Дата охранного документа
23.10.2019
Аннотация: Изобретение относится к области радиотехники и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач радиоконтроля источников радиоизлучений. Достигаемый технический результат - повышение эффективности контроля излучения нескольких источников частотно-неразделимых сигналов. Указанный результат достигается за счет стабилизации уровня правильной идентификации и снижения уровня ложной идентификации источников радиоизлучения, расположенных вблизи заданных направлений, в реальных условиях при неизвестной интенсивности шума и различии амплитуд принятых сигналов с выходов антенн с произвольными характеристиками направленности антенных элементов. Способ справедлив для антенной системы с произвольной структурой и характеристиками направленности антенных элементов, в результате чего обеспечивается инвариантность решающей статистики к изменению соотношений уровней сигналов в каналах, в том числе обусловленных взаимными влияниями в антенной системе. 4 ил.

Изобретение относится к области радиотехники и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах (ОП) систем радиомониторинга для решения задач радиоконтроля источников радиоизлучений (ИРИ).

В реальных условиях имеет место многолучевое распространение сигнала. Для повышения показателей эффективности радиомониторинга задача контроля нескольких источников частотно-неразделимых сигналов при наличии преднамеренных помех является весьма актуальной. В общем случае будем считать, что если спектральные компоненты радиоволн попадают в один и тот же элемент разрешения ОП по частоте (например, элементарный частотный канал преобразования Фурье), то такие источники радиосигналов частотно-неразделимые для данного ОП.

Известны способы радиоконтроля пеленгования источников радиоизлучения, основанные на азимутальном пеленговании ИРИ и представленные в [1], в которых рассматривается задача идентификации в одноэтапном варианте непосредственно по сигналам антенн , принимаемым на фоне независимых шумов одинаковой дисперсией σ2 в каналах приема интенсивности. Правило идентификации ИРИ в шумах известной и неизвестной интенсивности предполагает сравнение решающих статистик с пороговым уровнем h:

, (1)

, (2)

где – максимальные значения углового спектра принятых сигналов,

Z(θ0) – значения углового спектра принятых радиосигналов с заданного направления,

θ – направление азимута на ИРИ,

E – суммарная энергия принятых радиосигналов,

h – порог, выбираемый исходя из критерия Неймана-Пирсона и обеспечивающий требуемую вероятность правильной идентификации.

Однако указанные способы контроля излучения источника в заданном направлении предполагают выполнение процедуры пеленгования, что сопряжено с использованием значительных объемов памяти, приводящим к снижению быстродействия систем радиоконтроля.

Наиболее близким к предлагаемому способу является [2], используемый далее в качестве прототипа и предполагающий оценивание значения глобального максимума углового спектра, измерение значения углового спектра принятых радиосигналов с заданного направления и сравнение с порогом, по результатам чего судят о приходе радиоизлучения с заданного направления.

Данный способ предполагает выполнение следующих процедур:

1. Прием радиоизлучения с помощью N антенн и N-канального приемного устройства.

2. Синхронное преобразование радиосигналов всех каналов приема с получением их квадратурных составляющих, перемножение отсчетов радиосигналов на их сопряженные значения, накопление результатов перемножения за время наблюдения по совокупности антенн. Мгновенное значение радиосигнала n-й антенны, n = 0…N-1 в момент времени τ = 0,1,2,… представляет собой смесь принятого радиосигнала источника радиоизлучения и шума:

(3)

где – комплексная огибающая радиосигнала в фазовом центре антенной решетки,

θn, βn – азимут и угол места направления на источник излучения соответственно,

– вектор аддитивного шума.

1. Вычисление значений энергий и взаимной энергий радиосигналов, принятых антеннами по формулам

(4)

(5)

2. Измерение значений углового спектра принятых радиосигналов с заданного направления путем взвешенного суммирования энергии и взаимной энергии с весами, определяемыми характеристиками направленности антенн по формуле

, (6)

где – комплексный коэффициент направленности n-й антенны,

En – энергия радиосигнала, принятого n-й антенной,

– взаимная энергия радиосигналов, принятых антеннами с номерами n и n',

1. Вычисление максимального значения углового спектра Z(θmax, βmax) по возможным направлениям прихода радиоволны по формуле

. (7)

2. Вычисление значения углового спектра Z(θ0, β0) с заданного направления прихода радиоволны по формуле

(8)

2. Формирование решающей статистики Λ как отношения разности суммарной энергии сигналов (E) и максимального значения углового спектра Z(θmax, βmax) к разности суммарной энергии и значения углового спектра принятых радиосигналов с заданного направления Z(θ0, β0):

, (9)

где E – суммарная энергия принятых радиосигналов,

Z(θmax, βmax) – максимальное значение углового спектра принятых сигналов,

Z(θ0, β0) – значения углового спектра принятых радиосигналов с заданного направления.

1. Сравнение решающей статистики Λ с порогом h.

2. Принятие решения о наличии радиоизлучения с заданного направления в случае выполнения неравенства

Λ > h (10)

Если порог h превышен, принимают решение о наличии радиоизлучения с заданного (эталонного) направления, в противном случае – о приходе радиоизлучения с направления, отличного от эталонного.

Основными недостатками аналога и прототипа является:

1. Предполагается решение задачи контроля одного источника излучения в заданном направлении. В реальных условиях функционирования обнаружителя-пеленгатора, в сложной электромагнитной обстановке при наличии нескольких источников частотно-неразделимых сигналов актуальной является задача одновременного контроля излучения нескольких источников.

2. Решающая статистика (9) прототипа справедлива, когда антенны обнаружителя-пеленгатора являются идентичными и ненаправленными, а их диаграммы направленности имеют единичную амплитуду, не зависящую от направления прихода радиоволны ИРИ, и описываются функциями вида

, (11)

где R – радиус антенной системы,

λn – длина волны излучения,

ϕl(θ,β) – фазирующая функция, зависящая от параметров конфигурации антенной системы,

θ – азимут направления на источник,

i – мнимая единица.

В общем случае при наличии взаимных влияний в антенной системе обнаружителя-пеленгатора, а также в случае использования амплитудно-направленных антенных элементов другого типа использование решающей статистики (9) становится несправедливым и приводит к ухудшению показателей эффективности способа-прототипа.

1. Выражение (9) для решающей статистики обнаружения не учитывает наличие межканальной корреляции спектральных отсчетов временных реализаций, обусловленных наличием в реальных условиях внешних помех.

2. Для технической реализации способа-прототипа необходимо обеспечить согласованный прием сигнала контролируемых ИРИ с шириной их спектра, однако большинство современных обнаружителей-пеленгаторов являются широкополосными, с полосой мгновенного анализа, на несколько порядков превышающей ширину сигнала, что требует выполнение дополнительной процедуры обнаружения сигнала в спектральной области. Использование дополнительного узкополосного приемника для решения задачи контроля приводит к существенному усложнению аппаратуры.

3. Способ не обеспечивает контроль источников частотно-неразделимых сигналов.

Задачей, на решение которой направлено данное изобретение, является повышение эффективности контроля излучения нескольких источников частотно-неразделимых сигналов с помощью многоканальных моноимпульсных обнаружителей-пеленгаторов с произвольной структурой и характеристиками направленности антенной системы.

Достигаемый технический результат – повышение эффективности идентификации нескольких источников частотно-неразделимых сигналов за счет стабилизации уровня правильной идентификации и снижения уровня ложной идентификации источников радиоизлучения, расположенных вблизи заданных направлений в реальных условиях, при неизвестной интенсивности шума и различии амплитуд принятых сигналов с выходов антенн с произвольными характеристиками направленности антенных элементов.

В результате решения поставленной задачи предлагаемый способ контроля излучения нескольких источников частотно-неразделимых сигналов включает выполнение следующих процедур:

1. Прием радиоизлучения с помощью N антенн и N-канального приемного устройства.

2. Синхронное преобразование радиосигналов всех каналов приема с получением их квадратурных составляющих, перемножение отсчетов радиосигналов на их сопряженные значения, накопление результатов перемножения за время наблюдения по совокупности антенн. Мгновенное значение радиосигнала n-й антенны, , в момент времени τ=0,1,2,… представляет собой смесь принятого радиосигнала источника радиоизлучения и шума:

(12)

где – комплексные амплитуды радиосигналов,

– матрица, составленная из азимутов и углов места направления на источники частотно-неразделимых сигналов,

(θ β)T – оператор транспонирования,

– комплексный коэффициент направленности n-й антенны,

– вектор аддитивного гауссовского шума с матрицей коэффициентов корреляции (в случае некоррелированного шума матрица становится диагональной единичной матрицей).

1. Формирование матрицы взаимных энергий, накопленных по спектральным компонентам радиосигнала в каждом измерении комплексных амплитуд сигналов и последующее суммирование матриц по формуле

, (13)

где – оператор эрмитово сопряжения.

2. Для каждого контролируемого частотного участка выделяемой полосы мгновенного анализа выполняется измерение значений многосигнального углового спектра с учетом межканальной корреляции спектральных отсчетов временных реализаций по формуле:

, (14)

где

,

,

,

– матрица Фишера (оценок комплексных амплитуд напряженностей электрического поля принимаемых радиоволн),

– оператор следа матрицы.

1. Вычисление максимального значения многосигнального углового спектра по возможным направлениям прихода радиоволны по формуле

. (15)

2. Вычисление значения многосигнального углового спектра с заданных направлений прихода радиоволны по формуле

. (16)

3. Формирование решающей статистики как отношения разности следа от произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума, , и максимального значения многосигнального углового спектра к разности следа от и значения многосигнального углового спектра принятых радиосигналов с заданного направления

, (17)

где – максимальное значения многосигнального углового спектра принятых сигналов,

– значения многосигнального углового спектра принятых радиосигналов с заданного направления.

1. Сравнение решающей статистики Λ с порогом h.

2. Принятие решения о наличии радиоизлучения с заданного направления в случае выполнения неравенства Λ > h.

Если порог h превышен, принимают решение о наличии радиоизлучения с заданного (эталонного) направления, в противном случае – о приходе радиоизлучения с направления, отличного от эталонного.

Предлагаемый способ контроля излучения нескольких источников частотно-неразделимых сигналов лишен перечисленных выше недостатков прототипа, а именно:

1. Предлагаемый способ позволяет решить задачу идентификации нескольких источников радиоизлучения.

2. Решающая статистика (17) предлагаемого способа справедлива в случае антенной системы с произвольной структурой и характеристиками направленности антенных элементов, в частности, в используемом в прототипе предположении, что антенны обнаружителя-пеленгатора являются идентичными и ненаправленными. Это позволяет использовать предлагаемый способ в реальных условиях функционирования обнаружителей-пеленгаторов, когда имеют место взаимные влияния антенн друг на друга.

3. Выражение (17) для решающей статистики контроля излучения нескольких источников частотно-неразделимых сигналов предлагаемого способа учитывает наличие межканальной корреляции спектральных отсчетов временных реализаций, обусловленных наличием в реальных условиях внешних помех, что позволяет при разработке обнаружителей-пеленгаторов проводить анализ достижимых показателей эффективности обнаружения сигналов ИРИ в условиях насыщенной электромагнитной обстановки, а также учитывать наличие корреляции помех в реальных условиях функционирования обнаружителей-пеленгаторов.

1. Прием сигнала осуществляется в широкой полосе частот мгновенного анализа, что дает возможность одновременного контроля нескольких ИРИ в заданном направлении.

2. В случае выполнения неравенства (10) (принятие решения о наличии излучения нескольких источников частотно-неразделимых сигналов) накопление матрицы взаимных энергий в каждом измерении комплексных амплитуд сигналов выполнятся по правилу ( – матрица взаимных энергий, накопленная по результатам предыдущих процедур идентификации, – матрица взаимных энергий, вычисленная при выполнении текущей процедуры идентификации источника радиосигнала с заданных направлений), что повышает вероятность правильной идентификации излучения источника с заданного направления за счет увеличения объема наблюдаемых данных.

Предложенный способ обеспечивает возможность одновременного контроля нескольких источников частотно-неразделимых сигналов с обеспечением стабилизации уровня правильной идентификации и снижение уровня ложной идентификации источников радиоизлучения, расположенного вблизи заданных направлений, а так же при неизвестной интенсивности шума.

Схема для реализации предлагаемого способа представлена на фиг. 1.

Устройство, реализующее предложенный способ, содержит:

1.1-1.N – многоканальная антенная система,

2 – радиоприемное устройство,

3 – измеритель энергии,

4 – блок определения модуля,

5 – коммутатор,

6 – запоминающее устройство (ЗУ),

7 – анализатор многосигнального углового спектра,

8 – устройство определения максимума,

9.1, 9.2 – запоминающие ячейки,

10 – накапливающий сумматор,

11 – решающее устройство,

12 – аналого-цифровой преобразователь (АЦП),

13 – оперативное запоминающее устройство,

14.1, 14.2 – умножители,

15.1, 15.2 – накапливающие сумматоры.

Устройство работает следующим образом.

Антенны 1.1…1.N подключены к входам радиоприемного устройства 2 и через его выход к входам измерителя энергии 3, первый выход которого через блок определения модуля 4 соединен с первым входом коммутатора 5 и непосредственно со вторым его входом. Выход коммутатора 5 подключен к первому входу анализатора многосигнального углового спектра 7, ко второму входу которого подключен второй выход измерителя энергии 3, а к третьему входу – выход запоминающего устройства 6. Выход анализатора многосигнального углового спектра 7 соединен с входом устройства определения максимума 8 и входом запоминающей ячейки 9.1. Устройство определения максимума 8 своим выходом подключено к входу запоминающей ячейки 9.2. Второй выход измерителя энергии 3 соединен с входом накапливающего сумматора 10. Выходы запоминающей ячейки 9.1, запоминающей ячейки 9.2 и накапливающего сумматора 10 подключены соответственно к первому, второму и третьему входам решающего устройства 11. Аналого-цифровой преобразователь 12 в составе измерителя энергии 3 со стороны выходов соединен с соответствующими входами оперативного запоминающего устройства 13, первый выход которого подключен к первому входу умножителя 14.1, а второй – ко второму входу умножителя 14.1, первому и второму входу умножителя 14.2, выход умножителя 14.1 соединен с входом накапливающего сумматора 15.1, а выход умножителя 14.2 – с входом накапливающего сумматора 15.2. Выходы накапливающих сумматоров 15.1, 15.2 являются первым и вторым выходами измерителя энергии 3, а выходы решающего устройства 11 – выходом устройства в целом. Еще по одному выходу накапливающих сумматоров 15.1 и 15.2 могут использоваться дополнительно.

Число антенн 1.1, 1.2 … 1.N составляет N ≥ 3. Радиоприемное устройство 2 многоканальное, число каналов равно числу антенн N. Измеритель энергии 3 обеспечивает измерение энергии радиосигналов, принятых каждой антенной, и взаимной энергии радиосигналов пар различных антенн. Аналого-цифровой преобразователь 12 в составе измерителя энергии 3 рассчитан на синхронное преобразование радиосигналов всех каналов приема с получением их квадратурных составляющих с записью результатов в оперативное запоминающее устройство 13. Анализатор углового спектра 7 обеспечивает измерение значений углового спектра по формуле (14).

Устройством определения максимума 8 вычисляется максимальное по возможным направлениям прихода радиоволн значение по формуле (15) и фиксируется в запоминающей ячейке 9.2. Измеренное значение многосигнального углового спектра в заданном направлении заносится в запоминающую ячейку 9.1 в момент поступления его с выхода анализатора многосигнального углового спектра 7. По результатам выполненных измерений в решающем устройстве 11 определяют разность следа (суммы диагональных элементов) квадрата нормированной матрицы взаимных энергий и максимального значения многосигнального углового спектра, разность квадрата следа данной матрицы и значения многосигнального углового спектра принятых радиосигналов с заданных направлений, а также отношение этих разностей с образованием решающей статистики по формуле (17). На завершающей стадии отношение разностей сравнивают с порогом, формула (18). Если порог h превышен, принимают решение о приходе радиоизлучения с заданных направлений, а в противном случае о приходе радиоизлучения с направлений, отличных от эталонных.

РЕАЛИЗАЦИЯ

На фиг. 2-4 представлены результаты статистического моделирования для семиэлементной эквидистантной кольцевой антенной решетки при отношении радиуса ЭКАР к длине волны, равном единице, и отношении сигнал/шум 10 дБ в пакете моделирования Matlab. Рассмотрен случай контроля излучения двух некогерентных источников частотно-неразделимых сигналов. При статистическом моделировании характеристик контроля излучения двух источников частотно-неразделимых сигналов число статистических испытаний выбиралось равным 108, количество накоплений матрицы взаимных энергий полагалось равным 3. Азимутальные направления принимались равными 0 градусов на первый источник, 15 градусов на второй источник, угол места 0 градусов. Матрица, характеризующая направления на источники излучения, имеет вид

.

В случае наличия двух направлений (J = 2), матрица Фишера (оценок амплитуд напряженностей комплексных амплитуд электрического поля принимаемых частотно-неразделимых сигналов) примет вид

, (19)

а обратная ей матрица корреляции данных оценок

(20)

Двухсигнальный пеленгационный рельеф (14) записывается как

, (21)

где введена функция пространственной корреляции двух плоских волн

. (22)

В том случае, когда внутренние шумы приемных каналов независимы и одинаковы по интенсивности, матрица корреляции становится диагональной, многосигнальный угловой спектр имеет вид

. (23)

В каждом статистическом эксперименте по одинаковым исходным данным вычислялись величины, соответствующие решающей статистике предложенного способа, формула (17):

.

В качестве примера, при проведении моделирования формировался коррелированный вектор гауссовского шума с матрицей корреляции, элементы которой имеют вид

.

Матрица имеет вид:

(24)

На фиг. 2 приведены зависимости вероятности идентификации двух источников частотно-неразделимых сигналов к эталонам от угловых расстояний до него, при этом , с шагом ( – угловое расстояние до ИРИ). Матрица корреляции Q – единичная.

На фиг. 3 приведены зависимости вероятности P идентификации двух источников частотно-неразделимых сигналов к эталонам от угловых расстояний до него, при этом , с шагом Матрица корреляции Q – единичная.

На фиг. 4 приведены зависимости вероятности идентификации двух источников частотно-неразделимых сигналов к эталонам от угловых расстояний до него, при этом , с шагом

Порог принятия решения об отождествлении двух источников частотно-неразделимых сигналов с контролируемыми, для обеспечения вероятности правильной идентификации 0,98 равен 0,9.

Из представленных зависимостей (фиг. 2, 3) видно, что вероятность идентификации двух источников частотно-неразделимых сигналов мене 0,1 достигается при угловых расстояниях более 16 градусов. При рассмотрении зависимости (фиг. 4) вероятности идентификации двух источников частотно-неразделимых сигналов при влиянии матрицы коэффициентов межканальной корреляции аддитивного шум (24), вероятность правильной идентификации менее 0,1 достигается при угловых расстояниях более 30 градусов.

Предлагаемый способ контроля излучения нескольких источников частотно-неразделимых сигналов обеспечивает повышение эффективности идентификации нескольких источников частотно-неразделимых сигналов за счет стабилизации уровня правильной идентификации и снижения уровня ложной идентификации источников радиоизлучения, расположенных вблизи заданных направлений, в реальных условиях неизвестной интенсивности шума и различии амплитуд принятых сигналов с выходов антенн с произвольными характеристиками направленности антенных элементов. Способ справедлив для АС с произвольной структурой и характеристиками направленности антенных элементов, в результате чего обеспечивается инвариантность решающей статистики к изменению соотношений уровней сигналов в каналах, в том числе обусловленных взаимными влияниями в антенной системе.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Уфаев В.А. Способы определения местоположения и пространственной идентификации источников радиоизлучений, М.: Воронеж, 2017. с.235-239.

2. Патент РФ №2294546 «Способ идентификации радиоизлучения» / Уфаев В.А., 2005.

Способ контроля излучения нескольких источников частотно-неразделимых сигналов, включающий прием радиоизлучения с помощью N антенн и N-канального приемного устройства, где N>2, вычисление максимального значения углового спектра по возможным направлениям прихода радиоволны, вычисление значения углового спектра принятых радиосигналов с заданных направлений, формирование решающей статистики в виде отношения разности следа от произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума и максимального значения углового спектра к разности следа от произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума и значения углового спектра принятых радиосигналов с заданного направления и сравнение ее с порогом, выбираемым исходя из критерия Неймана-Пирсона и обеспечивающим требуемую вероятность правильной идентификации, по результатам чего судят о приходе радиоизлучений с заданных направлений, отличающийся тем, что формируют многосигнальный угловой спектр, максимальное значение которого вычисляют как квадратный корень следа квадрата произведения матрицы взаимных энергий на обратную матрицу коэффициентов корреляции шума; вычисляют значения углового спектра принятых радиосигналов с заданных направлений как след от произведения двух матриц, при этом одну матрицу формируют как произведение матрицы комплексных коэффициентов направленности антенной системы и обратной матрицы Фишера оценок комплексных амплитуд напряженностей электрического поля принимаемых радиоволн на эрмитово сопряженную матрицу комплексных коэффициентов направленности антенной системы, а другую матрицу формируют как произведение трех матриц: обратной матрицы коэффициентов корреляции шума, матрицы взаимных энергий, обратной матрицы коэффициентов корреляции шума; матрицу Фишера оценок комплексных амплитуд напряженностей электрического поля принимаемых радиоволн вычисляют как произведение эрмитово сопряженной матрицы комплексных коэффициентов направленности антенной системы и обратной матрицы коэффициентов корреляции шума и матрицы комплексных коэффициентов направленности антенной системы, при этом решающая статистика инвариантна к структуре и характеристикам направленности антенных элементов антенной системы; обеспечивают одновременный контроль в текущей полосе мгновенного анализа нескольких источников радиоизлучения в реальных условиях функционирования многоканального обнаружителя-пеленгатора, характеризующихся различными уровнями принимаемых сигналов и наличием межканальной корреляции аддитивного шума с неизвестной интенсивностью.
Способ контроля излучения нескольких источников частотно-неразделимых сигналов
Способ контроля излучения нескольких источников частотно-неразделимых сигналов
Способ контроля излучения нескольких источников частотно-неразделимых сигналов
Способ контроля излучения нескольких источников частотно-неразделимых сигналов
Способ контроля излучения нескольких источников частотно-неразделимых сигналов
Источник поступления информации: Роспатент

Показаны записи 41-50 из 105.
20.06.2019
№219.017.8cd1

Устройство формирования и обработки широкополосных сигналов

Изобретение относится к помехозащищенным системам радиосвязи, использующим шумоподобные фазоманипулированные сигналы, и может найти применение в помехозащищенных системах радиосвязи. Достигаемый технический результат - возможность формировать и обрабатывать сигналы, объем алфавита и база...
Тип: Изобретение
Номер охранного документа: 0002691733
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d60

Способ высокоточной оценки несущей частоты сигнала в широкополосных системах связи

Изобретение относится к области радиотехники, в частности к способам и устройствам частотной синхронизации широкополосного сигнала (ШПС) в системах радиосвязи и сотовых системах связи множественного доступа с кодовым разделением каналов (Code Division Multiple Access – CDMA). Технический...
Тип: Изобретение
Номер охранного документа: 0002691972
Дата охранного документа: 19.06.2019
13.07.2019
№219.017.b380

Способ получения наноструктурированных покрытий из карбидов тугоплавких металлов

Изобретение относится к способам нанесения покрытий из карбидов и тугоплавких металлов на подложку магнетронным распылением. Способ включает механическую очистку и обезжиривание поверхности, нанесение покрытия распылением мозаичной мишени в магнетронной распылительной системе. В среде инертного...
Тип: Изобретение
Номер охранного документа: 0002694297
Дата охранного документа: 11.07.2019
23.07.2019
№219.017.b6ba

Устройство двухзондового измерения фазовых сдвигов распределённой rc-структуры

Изобретение относится к измерительной технике и может использоваться для оценки электрофизических характеристик сред, описываемых моделью распределённых RC-структур. Заявлено устройство двухзондового измерения фазовых сдвигов распределённой RC-структуры, в которое введен операционный...
Тип: Изобретение
Номер охранного документа: 0002695030
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b6f0

Антенное устройство с переключаемой диаграммой направленности на основе пассивных элементов с изменяемыми характеристиками

Изобретение относится к области антенной техники, в частности к антеннам с переключаемой диаграммой направленности. Антенна содержит источник излучения, которым является постоянно подключенный к линии питания электрический вибратор, окружённый равномерно расположенными коммутируемыми пассивными...
Тип: Изобретение
Номер охранного документа: 0002695026
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b70f

Двухзондовый способ измерения фазовых сдвигов распределённой rc-структуры

Изобретение относится к измерительной технике и может использоваться для оценки электрофизических характеристик сред, описываемых моделью распределённых RC-структур. Заявлен двухзондовый способ измерения фазовых сдвигов распределённой RC-структуры, в котором получение непрерывного...
Тип: Изобретение
Номер охранного документа: 0002695025
Дата охранного документа: 18.07.2019
26.07.2019
№219.017.b973

Способ защиты от узкополосных и импульсных помех для цифрового приёмника

Изобретение относится к области радиотехники и может найти применение в системах радиосвязи для передачи данных по радиоканалу в условиях воздействия комплекса преднамеренных помех. Технический результат - обеспечение помехоустойчивого режима работы радиоприёмной аппаратуры. В способе защиты...
Тип: Изобретение
Номер охранного документа: 0002695542
Дата охранного документа: 24.07.2019
01.08.2019
№219.017.bb25

Способ адаптивного пространственно-многоканального обнаружения спектральных компонент сигналов источников радиоизлучения

Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач обнаружения спектральных компонент сигналов источников радиоизлучения. Достигаемый технический результат – повышение достоверности...
Тип: Изобретение
Номер охранного документа: 0002696022
Дата охранного документа: 30.07.2019
01.08.2019
№219.017.bb28

Цифровое радиоустройство с встроенной маскировкой электромагнитного канала утечки речевой информации

Изобретение относится к области радиотехники и может быть использовано для создания перспективных цифровых радиоустройств с программируемой архитектурой в условиях существования побочных электромагнитных полей и наводок для обеспечения конфиденциальности речевой радиосвязи. Технический...
Тип: Изобретение
Номер охранного документа: 0002696019
Дата охранного документа: 30.07.2019
01.08.2019
№219.017.bb49

Способ передачи информации в системе связи с широкополосными сигналами

Изобретение относится к области радиотехники, в частности к системам обработки информации, использующим сложные широкополосные сигналы, и может найти применение в широкополосных помехозащищенных системах радиосвязи. Достигаемый технический результат – повышение скорости передачи информации....
Тип: Изобретение
Номер охранного документа: 0002696021
Дата охранного документа: 30.07.2019
Показаны записи 21-22 из 22.
23.05.2023
№223.018.6d54

Угломерно-корреляционный способ определения местоположения наземных источников радиоизлучения

Изобретение относится к радиотехнике и может быть использовано при определении местоположения наземных источников радиоизлучений (ИРИ). Технический результат – повышение точности определения координат цели и снижение вычислительных затрат при реализации способа определения координат ИРИ....
Тип: Изобретение
Номер охранного документа: 0002764149
Дата охранного документа: 13.01.2022
23.05.2023
№223.018.6dd0

Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке

Изобретение относится к области радиотехники и может быть использовано в системах радиомониторинга, в том числе радиолокации, для повышения эффективности отождествления радиосигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке. Технический результат – повышение вероятности...
Тип: Изобретение
Номер охранного документа: 0002752863
Дата охранного документа: 11.08.2021
+ добавить свой РИД