×
18.10.2019
219.017.d767

Результат интеллектуальной деятельности: Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными воздушно-реактивными двигателями (ПВРД). В термоэмиссионном преобразователе, включающем выполненный в виде металлического стакана катод, дно которого обращено к источнику тепла, и установленные внутри катодного стакана коаксиально друг другу металлокерамический гермоузел и анод, образующий межэлектродный зазор с дном катодного стакана, катодный стакан расположен с зазором перпендикулярно наружной стенке прямоугольной камеры сгорания прямоточного воздушно-реактивного двигателя. При этом дно катодного стакана снаружи снабжено покрытием с высокой степенью черноты, преобразователь содержит по меньшей мере один дистанционатор межэлектродного зазора и сильфонный узел, а анод снабжен тепловодом, соединенным через слой электроизоляционного материала с холодильником-излучателем, выполненным в виде усеченной конической пирамиды, большее основание которой, обращенное к окружающему пространству, ограничено шестью или четырьмя боковыми гранями. Технический результат - обеспечение возможности установки ТЭП на ПВРД без усложнения конструкции его камеры сгорания, включение бортового источника электроэнергии в состав конструкции ВЛА, а также упрощение экспериментальной отработки этого источника, повышение его надежности и энергетической эффективности. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными воздушно-реактивными двигателями (ПВРД).

В качестве бортовых источников электроэнергии для летательных аппаратов (ЛА) [Зонтов В.М., Куприн Б.В. Системы электроснабжения летательных аппаратов. М., ВВИА им. проф. Н.Е. Жуковского, 1988., 395 с] применяются химические источники тока (ХИТ) [Федотов Д.Б., Ялюшев Н.И., Мафтей А.Н. Опыт применения литий-тионилхлоридных источников тока в ракетно-космической технике. «Электрохимическая энергетика», 2013, Т. 13, №2, с. 90-95.], а также электромеханические генераторы (ЭМГ) с приводом от газотурбинного двигателя (ГТД) ЛА [Бертинов А.И. Авиационные электрические генераторы. - М.: Оборонгиз, 1959, 594 с] или от его вспомогательной силовой установки (ВСУ) [Павловский Н.И. Вспомогательные силовые установки самолетов. М.: «Транспорт», 1977, 240 с].

Недостатками такого подхода применительно к ВЛА с ПВРД являются:

- использование ВСУ возможно только на относительно крупных ЛА из-за снижения эффективности малогабаритных ГТД в связи с масштабными факторами (рост числа оборотов в минуту и влияния перетечек газа в радиальных зазорах, проблемы подшипников и т.д.);

- в ПВРД, в отличие от ГТД, отсутствует возможность отбора механической мощности на привод ЭМГ;

- размещение достаточно мощного ХИТ на борту ВЛА, конструкция которого в полете подвергается значительному аэродинамическому нагреву, осложняется необходимостью обеспечить охлаждение этого ХИТ до допустимых рабочих температур (для наиболее совершенных в настоящее время литий-тионил-хлоридных ХИТ не более 130°С).

В то же время, наличие на поверхностях ВЛА теплозащиты из материалов, выдерживающих температуру до нескольких сот градусов (в зонах, не подвергающихся непосредственному воздействию гиперзвукового потока), позволяет использовать такие поверхности в качестве холодильника-излучателя термодинамического цикла ТЭП тепловой энергии, выделяющейся в камере сгорания ПВРД, в электрическую, с пассивным охлаждением анода ТЭП тепловым излучением с наружной поверхности ВЛА.

Наиболее близким к заявляемому изобретению по аналогичному использованию термоэмиссионного преобразования энергии является ТЭП с плоскими электродами для термоэмиссионной надстройки тепловой электростанции (ТЭС) [Авторское свидетельство СССР №771764, H01J 45/00, опубл. 15.10.1980]. Катод этого ТЭП выполнен в виде стакана из жаростойкого сплава, дно которого обогревается снаружи излучением факела пламени в котлоагрегате ТЭС и имеет с внутренней стороны эмиссионное покрытие. Внутри стакана коаксиально ему установлен металлокерамический гермоузел (МКУ), внутри которого, в свою очередь, размещается массивный анод, одновременно выполняющий функцию теплоотвода и образующий межэлектродный зазор (МЭЗ) с эмиссионным покрытием катодного стакана. Анод находится в тепловом контакте с трубами котлоагрегата, на которых установлен ТЭП и по которым циркулирует паро-водяная смесь, охлаждающая анод.

Недостатками такого устройства применительно к бортовым источникам электроэнергии для ВЛА с ПВРД являются:

- размещение катодов ТЭП внутри топки котлоагрегата ТЭС, обусловленное выполнением ими функции тепловой изоляции, способствующей организации жидкого шлакоудаления, а также относительно низкой скоростью газового потока в этой топке, нецелесообразно для камеры сгорания ПВРД, так как усложняет установку ТЭП бортового источника энергии и конструкцию этой камеры;

- охлаждение анодов ТЭП с использованием теплоносителя (в прототипе это паро-водяная смесь) усложняет конструкцию, экспериментальную отработку и эксплуатацию бортового источника электроэнергии, а также снижает его надежность и устойчивость к повреждениям отдельных ТЭП;

- отсутствие дистанционаторов межэлектродного зазора (МЭЗ) и сильфонного узла, обычно используемых для компенсации линейных тепловых расширений материалов, усложняют технологию сборки ТЭП и снижают его надежность.

Задачей изобретения является обеспечение установки ТЭП на ПВРД без усложнения конструкции его камеры сгорания, включение бортового источника электроэнергии в состав конструкции ВЛА, а также упрощение экспериментальной отработки этого источника, повышение его надежности и энергетической эффективности.

Поставленная задача решается за счет того, что в термоэмиссионном преобразователе, включающем выполненный в виде металлического стакана катод, дно которого обращено к источнику тепла и установленные внутри катодного стакана коаксиально друг другу металлокерамический гермоузел и анод, образующий межэлектродный зазор с дном катодного стакана, согласно изобретению катодный стакан расположен с зазором перпендикулярно наружной стенке прямоугольной камеры сгорания прямоточного воздушно-реактивного двигателя, дно катодного стакана снаружи снабжено покрытием с высокой степенью черноты, преобразователь содержит, по меньшей мере, один дистанционатор межэлектродного зазора и сильфонный узел, а анод снабжен тепловодом, который через слой электороизоляционного материала соединен с холодильником - излучателем, выполненным в виде усеченной конической пирамиды, большее основание которой, обращенное к окружающему пространству, ограничено шестью или четырьмя боковыми гранями. При этом сильфонный узел, размещен снаружи катодного стакана коаксиально последнему, катодный стакан снабжен наружным кольцевым выступом, окружающим его дно, при этом ширина выступа достаточна для экранирования сильфонного узла от теплового излучения стенки камеры сгорания. Упомянутое покрытие с высокой степенью черноты, нанесенное снаружи на дно катодного стакана, выполнено на основе углеродных материалов.

Сущность заявленного технического решения поясняется чертежами, представленными на фиг. 1 и 2. На фиг. 1 схематически изображен ТЭП, размещенный вблизи стенки 1 камеры сгорания ПВРД, имеющей прямоугольное поперечное сечение. Катод ТЭП выполнен в виде стакана 2, дно которого снаружи нагрето излучением со стенки камеры до температуры ~1500°С. С внутренней стороны дно стакана имеет эмиссионное покрытие 3, а с наружной - покрытие с высокой степенью черноты 4. Внутри катодного стакана коаксиально ему расположены металлокерамический гермоузел 5 для взаимной электроизоляции электродов, а затем анод 6, снабженный тепловодом 7, который через слой электроизоляционного материала 8 соединен с холодильником - излучателем 9, охлаждающим анод до температуры ~650°С. Катодный стакан, в свою очередь, вставлен внутрь сильфонного узла 10, обеспечивающего компенсацию тепловых расширений материалов и герметизацию полости межэлектродного зазора, поддерживаемого с помощью дистанционаторов 11. При этом сильфонный узел защищен от теплового излучения камеры сгорания кольцевым выступом стенки катодного стакана у его дна. Катодный электрический вывод 12 и анодный электрический вывод 13 электрические выводы служат для взаимной коммутации отдельных ТЭП в составе бортового источника электроэнергии. На фиг. 2 показан порядок размещения соседних ТЭП 14, которые с помощью винтов 15 в гексагональном или шахматном порядке установлены на перфорированной пластине 16, защищенной от теплового излучения камеры сгорания слоем теплоизоляции 17 из углеродного войлока. При этом их холодильники - излучатели совместно образуют фрагмент наружной поверхности ВЛА.

Решение поставленной задачи обеспечивается выбранным расположением ТЭП относительно камеры сгорания ПВРД, наличием соединенного тепловодом через слой электроизоляционного материала с анодом холодильника-излучателя и формой этого излучателя, покрытия с высокой степенью черноты на наружной поверхности катодного стакана, а также, по меньшей мере, одного дистанционатора межэлектродного зазора и сильфонного узла, размещением этого узла относительно катодного стакана и наличием кольцевого выступа, окружающего дно стакана.

В частности, расположение катодного стакана ТЭП снаружи прямоугольной камеры сгорания ПВРД перпендикулярно ее стенке и с зазором между снабженным покрытием с высокой степенью черноты дном стакана и этой стенкой позволяет не изменяя существующую конструкцию ПВРД установить такой ТЭП, а его автономная конструкция с собственной пассивной системой охлаждения в виде излучателя, упрощает экспериментальную отработку и повышает надежность предлагаемого бортового источника электроэнергии, вследствие устойчивости этого источника к повреждениям (в т.ч. боевым) отдельных ТЭП. Выбранная форма холодильника-излучателя позволяет включить бортовой источник электроэнергии в состав конструкции ВЛА путем совмещения функций этого излучателя и тепловой защиты наружной поверхности летательного аппарата. Наличие сильфонного узла и дистанционаторов МЭЗ упрощает сборку ТЭП и способствует повышению его надежности. Размещение сильфонного узла снаружи катодного стакана, в зоне, защищенной от нагрева тепловым излучением стенки камеры сгорания, способствует уменьшению длины тепловода, благодаря чему снижается разность температур анода и холодильника-излучателя, а, следовательно, повышается эффективность преобразования энергии. Таким образом, указанная совокупность новых признаков позволяет решить комплексную задачу изобретения.

Сведения, подтверждающие возможность осуществления изобретения.

Катодный стакан с габаритным (по кольцевому выступу вокруг его дна) диаметром ~73 мм выполняли из молибдена, защищенного снаружи от высокотемпературной коррозии покрытием на основе силицида молибдена. Дно стакана снаружи имело дополнительное жаростойкое покрытие толщиной до 3 мм с высокой степенью черноты на основе углеродных материалов, а изнутри - эмиссионное покрытие в виде слоя монокристаллического вольфрама толщиной ~100 мкм. Анод выполняли в виде биметаллической конструкции, состоящей из ниобиевого электрода и медного тепловода, защищенного от коррозионного воздействия внешней среды хромированием или никелированием. Дистанционаторы МЭЗ, диаметром ~2-3 мм в количестве 4 шт. были выполнены из керамики на основе оксидов скандия или алюминия. МКУ содержал изолятор из оксида алюминия, например, монокристаллического, и манжеты из никелевых сплавов. Наружный диаметр сильфонного узла составлял ~50 мм, вследствие чего этот узел экранируется от теплового излучения кольцевым выступом стенки катодного стакана шириной ~10 мм. Тепловод, которым снабжен анод, приклеен к холодильнику - излучателю диаметром ~150 мм из графита, защищенного от внешней среды поверхностным силицированием, высокотемпературным алюмосиликатным клеем типа НС [Сычев М.М. Неорганические клеи. Л., «Химия», 1986, 152 с.], образующим между тепловодом и холодильником слой электроизоляционного материала толщиной ~0,2 мм. Холодильник-излучатель с помощью трех винтов крепился к перфорированной пластине из нержавеющей стали, защищенной от теплового излучения электронагревателя, имитировавшего стенку камеры сгорания ПВРД прямоугольной формы, теплоизоляцией из углеродного войлока. В процессе стендовых испытаний ТЭП в номинальном режиме (выходная мощность ~75 Вт при температуре катода до 1500°С) температура холодильника-излучателя не превышала 600°С.


Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем
Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем
Источник поступления информации: Роспатент

Показаны записи 41-50 из 174.
26.10.2018
№218.016.9620

Оптоволоконный фотоэлектрический свч модуль

Изобретение относится к области радиотехники, в частности к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и антенных решеток для связи, радиолокации и радиоэлектронной борьбы. Оптоволоконный фотоэлектрический СВЧ модуль включает симметричный...
Тип: Изобретение
Номер охранного документа: 0002670719
Дата охранного документа: 24.10.2018
06.12.2018
№218.016.a444

Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения,...
Тип: Изобретение
Номер охранного документа: 0002674117
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a463

Устройство для импульсной деформации длинномерных трубчатых изделий

Изобретение относится к обработке металлов давлением, а именно к устройствам для магнитоимпульсной обработки металлов давлением. Устройство содержит приспособление для прижимного соединения и разъединения торцевых частей полувитков блока разъемного индуктора. При этом указанное приспособление...
Тип: Изобретение
Номер охранного документа: 0002674184
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a50b

Радиофотонный передающий тракт для передачи мощных широкополосных сигналов и эффективного возбуждения антенн

Изобретение относится к радиофотонике, в том числе к технике передачи мощных широкополосных радиосигналов по волоконно-оптическим линиям связи к антеннам и антенным решеткам. Техническим результатом является повышение КПД, максимально достижимой мощности, широкополосности (расширение мгновенной...
Тип: Изобретение
Номер охранного документа: 0002674074
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a95b

Радиофотонный широкополосный приемный тракт на основе ммшг-модулятора с подавлением собственных шумов лазера

Изобретение относится к радиофотонике, в том числе к технике приема слабых широкополосных радиосигналов, например, от антенн и антенных решеток. Заявленный радиофотонный широкополосный приемный тракт на основе ММШГ-модулятора с подавлением собственных шумов лазера содержит лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002675410
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a963

Способ изготовления фотодетекторов мощного оптоволоконного свч модуля

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002675408
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a99f

Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации...
Тип: Изобретение
Номер охранного документа: 0002675411
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a9dd

Фотодетекторный свч модуль

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы. Фотодетекторный СВЧ модуль включает...
Тип: Изобретение
Номер охранного документа: 0002675409
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab9c

Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза

Изобретение относится к области получения противоаэрозольных фильтров из волокнистых фильтрующих материалов. Фильтрующий слой изготовлен из полиакрилонитрильных нановолокон. Нановолокна получены методом электроформования по технологии Nanospider из раствора полиакрилонитрила с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002675924
Дата охранного документа: 25.12.2018
27.12.2018
№218.016.ac66

Способ получения фильтрующего материала и фильтрующий материал

Изобретение относится к области получения высокоэффективных волокнистых фильтрующих материалов. Фильтрующий материал представляет собой трехслойную композицию, в которой один из слоев выполнен из полимерных (полиакрилонитрильных) нановолокон, полученных методом электроформования, и размещен...
Тип: Изобретение
Номер охранного документа: 0002676066
Дата охранного документа: 25.12.2018
Показаны записи 1-8 из 8.
10.05.2016
№216.015.3b63

Способ определения внутренних параметров и выходных характеристик цилиндрического термоэмиссионного преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения...
Тип: Изобретение
Номер охранного документа: 0002583891
Дата охранного документа: 10.05.2016
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
26.10.2019
№219.017.dad7

Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА). Согласно изобретению в термоэмиссионном...
Тип: Изобретение
Номер охранного документа: 0002704106
Дата охранного документа: 24.10.2019
27.11.2019
№219.017.e6e9

Термоэмиссионный преобразователь для бортового источника электрической энергии

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям, и может быть использовано в составе бортовых источников электрической энергии для летательных аппаратов с прямоточными воздушно-реактивными...
Тип: Изобретение
Номер охранного документа: 0002707192
Дата охранного документа: 25.11.2019
01.12.2019
№219.017.e954

Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростных летательных аппаратов

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе систем тепловой защиты и бортовых источников электрической энергии гиперзвуковых летательных аппаратов...
Тип: Изобретение
Номер охранного документа: 0002707557
Дата охранного документа: 28.11.2019
05.03.2020
№220.018.08c0

Генератор паров рабочего тела для термоэмиссионных преобразователей

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей (ТЭП), и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок,...
Тип: Изобретение
Номер охранного документа: 0002715733
Дата охранного документа: 03.03.2020
+ добавить свой РИД