×
12.10.2019
219.017.d517

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ РАСТВОРА МНОГОКОМПОНЕНТНОЙ ПРОБЫ ТВЕРДОГО ОБРАЗЦА БОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии, а именно к методам пробоподготовки. Анализ химического состава пробы, содержащей аморфную и кристаллические фазы бора и композиции бора с органическими веществами, включает взятие навески, смешивание со смесью водных растворов минеральных кислот - азотной, плавиковой и серной в качестве активной жидкости, и разделение на функциональные составные части. Смешение осуществляют в несколько стадий при комплексном воздействии температур не более 220°C и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2450 МГц и мощностью микроволн не более 1450 Вт. Количество стадий пропорционально степени кристалличности бора, размеру частиц образца. На каждой очередной стадии обработку твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот, или с концентрированной азотной кислотой до полного растворения пробы. Обеспечивается возможность полного растворения образцов бора, содержащих, и кристаллическую, и аморфные фазы, и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях. 1 табл.

Предлагаемое изобретение относится к области аналитической химии, а именно к методам пробоподготовки растворов проб твердого образца бора, содержащего и кристаллическую и аморфные фазы, и композиции бора с органическими веществами, для последующего анализа химического состава исследуемого вещества.

Актуальность решаемой проблемы основана на следующем. При определении химического состава бора используют различные методы аналитической химии, такие как спектрометрия, атомно-абсорбционной спектрометрии, атомно-эмиссионной спектрометрии, где требуется переведение твердых проб бора в раствор. Однако, растворение многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях, представляет собой достаточно труднорешаемую проблему и диктует выбор особых методов и веществ для ее решения. В отличие от бора аморфного бор, растворение которого не представляет особых трудностей, кристаллический бор стоек к воздействию минеральных кислот, а окислители (перекись водорода, перманганат калия и т.п.) окисляют его медленно.

Известен способ получения растворимого нитрида бора (патент РФ №2478077, МПК B82B 3/00, публ. 27.03.2013 г.), согласно которому подвергают смешению нитрид бора с функциональным реагентом, в качестве которого используют гидразин или смесь азотной и серной кислот.

Однако, в известном способе не предусмотрена возможность растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях, и является длительным и трудоемким.

Известен в качестве прототипа заявленному способ подготовки проб для определения содержания бора в исследуемом материале (патент РФ №2292036, МПК G01N 21/00, публ. 20.01.2007 г.), по которому исследуемый материал смешивают с активной добавкой, в качестве которой используют мочевину.

К недостаткам прототипа относится отсутствие возможности использовать его для растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях.

Задачей авторов изобретения явялется разработка эффективного способа растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении возможности полного растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной способностью растворятся в традиционных растворителях.

Указанные задача и новый технический результат обеспечивается тем, что в отличие от известного способа приготовления раствора многокомпонентной пробы твердого образца бора, содержащего аморфную и кристаллическую фазы, и композиции бора с органическими веществами, для проведения анализа химического состава пробы, включающем взятие навески, смешивание с активной минеральной жидкостью и разделение на функциональные составные части, согласно изобретению, разделение на функциональные составные части исследуемого материала ведут путем смешения многокомпонентной пробы твердого образца бора со смесью водных растворов минеральных кислот - азотной, плавиковой и серной в качестве активной жидкости, смешение осуществляют при комплексном воздействии температур не более 220°C и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2450 МГц и мощностью микроволн не более 1450 Вт, комплексное воздействие для разделения многокомпонентной пробы образца бора осуществляют в несколько стадий, в количестве, пропорциональном степени кристалличности бора, размеру частиц образца, смешение производят в герметичном сосуде, при этом на каждой очередной стадии обработку твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот или с концентрированной азотной кислотой, до полного растворения многокомпонентной пробы твердого образца бора.

Предлагаемый способ поясняется следующим образом.

Первоначально берут навеску многокомпонентные пробы твердого образца бора и производят смешивание с активной минеральной жидкостью и разделение на функциональные составные части. В качестве активной минеральной жидкости используют смесь водных растворов минеральных кислот - концентрированной азотной, плавиковой и серной. Экспериментально показано, что использование только разложения исследуемого твердого образцов бора, содержащего аморфную и кристаллическую фазы, и композиции бора с органическими веществами, в концентрированных азотной, фтористоводородной и серной кислотах не позволяет полностью разложить их. Особенности свойств указанных выше многосложных анализируемых проб бора диктуют необходимость сочетания разлождения химическими реагентами с воздействием физических факторов, например, высоких давлений и микроволнового излучения. Экспериментально были подобраны условия таких воздействий, которые при совместном использовании с разложением проб бора химическими реагентами дают наиболее высокий эффект переведения твердых многосложных проб бора в раствор.

В предлагаемом способе разделение на функциональные составные части исследуемого материала ведут путем смешения многокомпонентной пробы твердого образца бора со смесью водных растворов минеральных кислот - концентрированной азотной, плавиковой и серной в качестве активной жидкости, смешение осуществляют при комплексном воздействии температур не более 220°C и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2,45 ГГц и мощностью микроволн не более 1450 Вт. Комплексное воздействие для разделения многокомпонентной пробы образца бора осуществляют в несколько стадий, в количестве, пропорциональном степени кристалличности бора, размеру частиц образца, смешение производят в герметичном сосуде, при этом на каждой очередной стадии обработки твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот или с концентрированной азотной кислотой. При этом при физическом воздействии микроволн, температуры и избыточного давления в сосудах создаются условия для более интенсивного образования паров N2O4, которые остаются в реакционной смеси, воздействуя на исследуемый образец бора, за счет чего происходит химическое растворение бора, содержащего аморфную и кристаллическую фазы. Под воздействием смеси кислот, температуры, давления и микроволнового излучения органическая составляющая исследуемых образцов разлагается до оксида углерода, который выходит в виде газа при вскрытии реакционных сосудов, кремнийорганическая составляющая - до оксидов кремния, которые затем химически растворяются в концентрированной плавиковой кислоте.

Парметры процессов эффективного физического воздействия на процесс разложения многосоставной пробы твердого бора (таблица 1) были выявлены при экспериментальной отработке способа. Всякое превышение границ заявленных пределов температуры и давления не приведет к полному разложению многокомпонентной пробы твердого бора.

Проведение комплексного воздействия для разделения многокомпонентной пробы образца бора в количестве стадий, которые должны быть пропорциональными или степени кристалличности бора, или размеру частиц образца бора, также экспериментально обосновано. Так, показано, что если размер частиц бора более 0,1 мм, двух стадий может оказаться недостаточно для полного растворения. В этом случае повторяют вторую стадию разложения необходимое для этого количество раз до полного растворения исследуемой пробы бора.

Всю совокупность операций разложения твердых многосоставных проб бора в сочетании с воздействием микроволнового излучения и воздействием температур не более 220°C и давлений не более 80 бар проводят до полного растворения многокомпонентной пробы твердого образца бора. Полноту растворения проб бора определяют визуально или при использовании оптических методов определения прозрачности результирующих растворов исследуемых проб.

Таким образом, как это показали экспериментальные исследования, при использовании предлагаемого способа приготовления раствора многокомпонентной пробы твердого образца бора, обеспечиваются возможности полного растворения многосложных исходных образцов бора, содержащих и кристаллическую, и аморфную фазы, обладающих различной способностью растворяться в традиционных растворителях.

Возможность промышленной реализации предлагаемого способа может быть подтверждена следующими примера конкретного исполнения.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на растворении бора кристаллического по ТУ 6-08-296-74, фракция с размером частиц менее 0,3 мм. Для чего взяли навеску пробы массой 50 мг и поместили в тефлоновый сосуд для разложения типа DAK-100. В сосуд с пробой добавили концентрированные кислоты - 1,5 см3 HNO3 и 4 см3 H2S04. Растворение проводили в системе микроволнового разложения типа «Speedwave four» производства BERGHOF Products + Instruments GmbH (Германия) при параметрах, указанных в таблице 1. После вскрытия сосуда для разложения визуально установили, что в полученном растворе имеются неразложившиеся частицы пробы бора. В сосуд с пробой добавили 1,5 см3 концентрированной HNO3 и провели вторую стадию разложения при параметрах, указанных в таблице 1. После вскытия сосуда установлено, что получен прозрачный раствор.

Пример 2. При растворении бора кристаллического по ТУ 6-08-296-74. фракции с размером частиц менее 0,3 мм взяли навеску пробы массой 50 мг и поместили в тефлоновый сосуд для разложения типа DAK-100. Провели две стадии разложения в концентрированных кислотах HNO3 и H2S04 при условиях, приведенных в примере 1. После вскрытия сосуда установлено наличие иерастворившегося осадка бора. В сосуд с пробой добавили 1,5 см3 концентрированной HNO3 и провели третью стадию разложения при параметрах, указанных в таблице 1. После вскытия сосуда установлено, что получен прозрачный раствор.

Пример 3. При растворении смеси бора кристаллического по ТУ 6-08-296-74, фракции с размером частиц менее 0,1 мм и кремиийорганической смазки ВНИИ НП-293 но ТУ 38.101604-00 взяли навеску пробы массой 100 мг и поместили в тефлоновый сосуд для разложения типа DAK-100. Провели две стадии разложения в концентрированных кислотах HNO3 и H2S04 при условиях, приведенных в примере 1. После вскрытия сосудов установлено наличие осадка оксида кремния. В сосуд с пробой добавили 1,0 см3 концентрированной HF и провели третью стадию разложения при параметрах, указанных в таблице 1. После вскытия сосудов установлено, что получен прозрачный раствор. В данных условиях достигается полное растворение композиций на основе бора и полиэтилена, полипропилена, полиметилсилоксана и других органических материалов.

Как это показали приведенные примеры растворения многосложных исходных образцов бора, содержащих и кристаллическую, и аморфные фазы, и композиции бора с органическими веществами, обладающий различной способностью растворяться в традиционных растворителях, было достигнуто их полное переведение в раствор.

Способ приготовления раствора многокомпонентной пробы твердого образца бора, содержащего аморфную и кристаллическую фазы, и композиции бора с органическими веществами, для проведения анализа химического состава пробы, включающий взятие навески, смешивание с активной минеральной жидкостью и разделение на функциональные составные части, отличающийся тем, что разделение на функциональные составные части исследуемого материала ведут путем смешения многокомпонентной пробы твердого образца бора со смесью водных растворов минеральных кислот - азотной, плавиковой и серной в качестве активной жидкости, смешение осуществляют при комплексном воздействии температур не более 220°С и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2450 МГц и мощностью микроволн не более 1450 Вт, комплексное воздействие для разделения многокомпонентной пробы образца бора осуществляют в несколько стадий в количестве, пропорциональном степени кристалличности бора, размеру частиц образца, смешение производят в герметичном сосуде, при этом на каждой очередной стадии обработки твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот, или с концентрированной азотной кислотой до полного растворения многокомпонентной пробы твердого образца бора.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 796.
20.08.2014
№216.012.ec68

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула...
Тип: Изобретение
Номер охранного документа: 0002526328
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f2d3

Электродетонатор

Электродетонатор относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ. Электродетонатор содержит гильзу с размещенным в ней зарядом ВВ,...
Тип: Изобретение
Номер охранного документа: 0002527985
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.03f6

Переход низкочастотный

Изобретение относится к электротехнике и может быть использовано для обеспечения герметичного ввода электрических проводников через защитные стенки в зону воздействия высокого давления, ударных нагрузок, содержащую высокотоксичные продукты. Переход низкочастотный в загрязненную зону через...
Тип: Изобретение
Номер охранного документа: 0002532412
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.092b

Способ и устройство для измерения углового ускорения контролируемого объекта

Изобретение относится к области приборостроения и предназначено для измерения углового ускорения. Для измерения углового ускорения объекта производят измерение длительности интервалов времени между фронтами всех импульсов импульсным датчиком углового положения, определяют среднюю скорость на...
Тип: Изобретение
Номер охранного документа: 0002533748
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.10f5

Корпус подводного аппарата

Изобретение относится к области судостроения, в частности к конструкции корпусов аппаратов, работающих на устойчивость при действии гидростатического давления и сжимающей силы. Корпус подводного аппарата содержит металлический каркас и охватывающую его эластичную оболочку, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002535764
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.232f

Способ определения механических свойств хрупких материалов при растяжении

Изобретение относится к механическим испытаниям на растяжение хрупких образцов из композиционных материалов и предназначено для авиастроения, судостроения, машиностроения, атомной энергетики. Сущность изобретения: накладки одинаковых с образцом размеров и формы, выполненные из материала,...
Тип: Изобретение
Номер охранного документа: 0002540460
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.249e

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, в частности к бортовым антеннам спутниковой навигации. Технический результат изобретения заключается в упрощении настройки при уменьшении габаритов двухдиапазонной микрополосковой антенны круговой поляризации. Антенна содержит металлический...
Тип: Изобретение
Номер охранного документа: 0002540827
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a7f

Инерционный включатель

Инерционный включатель содержит корпус, инерционное тело на направляющей оси, контакты, а также неподвижную направляющую и подвижный поворотный привод контактов, расположенные коаксиально с инерционным телом и имеющие на боковых стенках пазы. Выключатель снабжен внешней втулкой, коаксиально...
Тип: Изобретение
Номер охранного документа: 0002542336
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3177

Система жизнеобеспечения исполнителя работ

Система жизнеобеспечения исполнителя работ относится к области атомной промышленности, а именно к системам жизнеобеспечения, защищающим от альфа- и бета-облучения. Система содержит герметичный костюм, в котором расположены маска, баллон с редуктором и распределитель воздуха, который сообщен...
Тип: Изобретение
Номер охранного документа: 0002544131
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3458

Матрица лазерных диодов и способ ее изготовления

Изобретение относится к матрицам лазерных диодов, которые могут быть использованы как самостоятельные источники излучения, так и в качестве системы накачки твёрдотельных лазеров. Матрица светодиодов содержит теплопроводящее основание с нанесенной толстопленочной металлизацией, выполненной в...
Тип: Изобретение
Номер охранного документа: 0002544875
Дата охранного документа: 20.03.2015
Показаны записи 1-5 из 5.
27.09.2014
№216.012.f84a

Способ изготовления металло-тритиевой мишени

Изобретение относится к технологии изготовления металло-тритиевых мишеней, в частности к способу изготовления титан-тритиевых мишеней, которые могут быть использованы для получения моноэнергетических потоков нейтронов. Заявляемый способ заключается в напылении слоя гидридобразующего металла на...
Тип: Изобретение
Номер охранного документа: 0002529399
Дата охранного документа: 27.09.2014
27.08.2015
№216.013.74e4

Способ изготовления титан-тритиевой мишени

Изобретение относится к способу изготовления титан-тритиевых мишеней, применяемых в вакуумной нейтронной трубке. В заявленном способе предусмотрена активация слоя гидридообразующего металла (титана), нанесенного на подложку, в камере насыщения путем нагрева до 300-500°С и подача трития в камеру...
Тип: Изобретение
Номер охранного документа: 0002561499
Дата охранного документа: 27.08.2015
26.08.2017
№217.015.ec5a

Способ кондиционирования воды, содержащей тритий

Изобретение относится к области охраны окружающей среды от радиоактивного загрязнения и может быть использовано для снижения класса опасности жидких радиоактивных отходов (ЖРО), в том числе высокоактивных отходов (ВАО). Способ кондиционирования воды, содержащей тритий, заключается в соединении...
Тип: Изобретение
Номер охранного документа: 0002627690
Дата охранного документа: 10.08.2017
29.05.2019
№219.017.673c

Способ очистки гелия от примеси изотопов водорода

Изобретение относится к технологии очистки инертных газов от газообразных примесей. Исходную газообразную смесь подают в сорбционный блок с пористым нанодисперсным углеродом для поглощения изотопов водорода под воздействием температуры. Одновременно с этим гелий отводят из сорбционного блока....
Тип: Изобретение
Номер охранного документа: 0002323157
Дата охранного документа: 27.04.2008
09.06.2019
№219.017.7c55

Способ получения полуфабриката для изготовления изделий из пенометалла

Изобретение относится к порошковой металлургии, в частности к получению пеноматериалов. Может использоваться в машиностроении, строительстве. В расплав металлического сплава вводят порофор - порошок гидрида редкоземельного металла, имеющего дисперсность от 20 до 300 мкм и степень насыщения,...
Тип: Изобретение
Номер охранного документа: 0002360020
Дата охранного документа: 27.06.2009
+ добавить свой РИД