×
04.10.2019
219.017.d26f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИДРОЗОЛЯ МОНОДИСПЕРСНОГО НАНОКРЕМНЕЗЕМА ДЛЯ ИЗГОТОВЛЕНИЯ БЕТОНА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Получение гидрозоля монодисперсного нанокремнезема осуществляется с использованием золь-гель синтеза. В реакционной смеси используют аммиак в качестве катализатора для гидролиза тетраэтоксисилана, этанол в качестве растворителя, а также добавляют полисорбат в качестве стабилизатора. Этанол отгоняют при нагреве с одновременным подводом воды. Полисорбат удаляют из полученного гидрозоля нанокремнезема путем масляной флотации с добавлением легкого алифатического предельного углеводорода с плотностью менее 700 кг/м и температурой кипения в районе 40-70°С и отстаивают до полного разделения на две фракции. Нижняя фракция представляет собой гидрозоль монодисперсного нанокремнезема, а верхняя фракция представляет собой смесь легкого алифатического предельного углеводорода и полисорбата, которую разделяют при помощи отгонки для повторного использования. Предложенное изобретение обеспечивает получение гидрозоля монодисперсного нанокремнезема с малым количеством этанола, не более 0,1%, готового к использованию при изготовлении бетонов. 3 табл., 2 пр.

Изобретение относится к химической промышленности, в частности, к области получения водных растворов наночастиц кремнезема, используемых в составе бетонов для их упрочнения.

Из современного уровня техники известен способ получения кремнезема в форме молекулярного силиказоля, растворенного в среде безводного органического растворителя (патент RU №2140393). Его недостатком является применение безводных растворителей, что негативно влияет на качество бетона.

Известно множество термических способов получения аморфного кремнезема (патенты RU №№2195427, 2387608, 2021203, 2021203, 2021203). Недостатком всех упомянутых технических решений является применение обжига, что усложняет получение кремнезема и повышает энергозатраты.

Известен способ получения мелкодисперсных кремнеземов из хлорсиланов (патент RU №2447020). Недостатком является необходимость высушивания реакционной смеси для отделения спирта, что приводит к агрегированию порошка и увеличению размеров частиц.

Известны способы получения кремнезема из природного сырья (патенты RU №№2179153, 2375303). Упомянутые способы либо не обеспечивают получения кремнезема наномасштабного размера, либо предполагают высокоэнергоемкое измельчение до наноразмера.

Известны способы получения золей кремнезема с использованием ионообменной смолы (патенты RU №№2363655, 224474, 2363656). Во всех случаях способы предполагают наличие силикатов щелочных металлов для стабилизации наночастиц, также негативно влияет на прочность бетона.

Известны также способы получения наноразмерного (коллоидного) кремнезема из природного сырья (патенты RU №№2296103, 2323889, 2537406). Способы обеспечивают получения нанокремнезема из специфических источников с малым сроком годности.

Наиболее близким к предлагаемому изобретению является (патент CN №101602508, МПК В82В 3/00; С01В 39/00, публ. 16.12.2009) способ получения гидрозоля сферических частиц монодисперсного нанокремнезема, включающий получение гидрозоля кремнезема путем использования золь-гель синтеза (метода Стебера), в котором используется аммиак в качестве катализатора для гидролиза тетраэтоксисилана и этанола в качестве растворителя. После завершения реакции большая часть этанола улетучивается путем нагревания раствора, затем в полученный раствор добавляется водный раствор нашатырного спирта. Недостатком прототипа, по мнению заявителя, является то, что получаемый раствор нанокремнезема содержит этанол (не менее 2%), что негативно влияет на прочность бетона. Таким образом, способ неэффективно использовать для изготовления бетона.

Органические примеси, такие как этанол, используемые при получении нанокремнеземов, способны значительно снижать прочность бетонов (таблица 1). Очистка водного раствора (гидрозоля) нанокремнезема от этанола позволяет улучшить качество получаемых бетонов с его использованием.

Задачей изобретения является повышение прочности бетона при сохранении физико-механических свойств (атмосферостойкость, стойкость к истиранию и стабильность при хранении) и сокращении расхода гидрозоля нанокремнезема.

Задача решается за счет того, что в реакционную смесь предварительно, вводят, в качестве стабилизатора, полисорбат, а после проведения золь-гель синтеза этанол отгоняют с одновременным подводом воды, после чего стабилизатор удаляют из полученного гидрозоля нанокремнезема.

Технический эффект от применения предлагаемого способа заключается в получении гидрозоля монодисперсного нанокремнезема с малым количеством этанола (не более 0,1%), готового к использованию при изготовлении бетонов, а также в возможности повторного использования полисорбата и легкого алифатического предельного углеводорода, полученных при помощи отгонки последнего (перегонки) из верхней фракции, образованной при масляной флотации.

Предлагаемый способ получения гидрозоля монодисперсного нанокремнезема для изготовления бетона осуществляют следующим образом.

Предварительно замешивают реакционную смесь, состоящую (по массе) из этанола (60-65%), стабилизатора - полиоксиэтилен сорбитан моноолеата (полисорбат) (10-15%), воды (15%) и тетраэтоксисилана (не менее 5%), затем по каплям добавляют нашатырный спирт до достижения уровня рН=8 и перемешивают в течение 90 минут (золь-гель синтез). После проведения золь-гель синтеза, этанол отгоняют при температуре около 60°С с одновременным подводом воды, причем содержание этанола не допускается выше 0,1% по массе от концентрации гидрозоля нанокремнезема. Затем, полисорбат удаляют из полученного гидрозоля нанокремнезема путем масляной флотации, а именно добавлением (петролейного эфира) перемешиванием не менее 10 минут при скорости не менее 10000 об/мин, отстаивают до полного разделения на две фракции, нижняя из них представляет собой гидрозоль монодисперсного нанокремнезема.

Исследования показали, что полисорбаты могут являться эффективными стабилизаторами монодисперсного кремнезема в этаноле [Singh, L.P., Bhattacharyya, S.K., Singh, Р., & Ahalawat, S. (2012). Granulometric synthesis and characterisation of dispersed nanosilica powder and its application in cementitious system. Advances in Applied Ceramics, 111(4), 220-227]. Также они традиционно применяются в качестве стабилизаторов водных дисперсий. Однако для дальнейшего отделения стабилизатора при помощи масляной флотации полисорбат должен удовлетворять следующим условиям:

- высокий уровень ГЛБ (>15), что позволяет эмульгировать добавляемый углеводород с наименьшим размером частиц, тем самым достигается наибольшая площадь поверхности капель углеводорода, которые способны отделить из раствора молекулы стабилизатора

- высокой молекулярной массой, что говорит о высоком весе каждой осевшей молекулой стабилизатора на единице поверхности капли углеводорода, что улучшает отделение стабилизатора от водного раствора.

- низкой вязкостью в водном растворе, что улучшает расслоение получаемых эмульсий;

- низкой критической концентрацией мицеллообразования (ККМ), что говорит о низкой остаточной концентрации стабилизатора в водной среде гидрозоля нанокремнезема после проведения масляной флотации.

Среди всех стабилизаторов нанокремнезема в этаноле наилучшим для проведения масляной флотации оказался полиоксиэтилен сорбитан моноолеат (таблица 2).

При интенсивном перемешивании полученного после синтеза и отгонки этанола водного раствора нанокремнезема и полисорбата (62,5 и 12,5%% по объему соответственно) с легким алифатическим предельным углеводородом (25% по объему) получаются эмульсии с наименьшим размером частиц, что говорит о самом эффективном использовании углеводорода. Углеводород должен выполнять следующим требованиям: плотность менее 700 кг/м3, температура кипения в районе 40-70°С, нерастворимость в воде, растворимость для этанола. Полученная эмульсия в течение некоторого времени расслаивается на две фракции: верхняя, представленная частицами углеводорода, содержащего в себе остатки этанола и окруженного молекулами полисорбата, нижняя - очищенный гидрозоль нанокремнезема с водой. Более высокая плотность углеводорода не обеспечивает необходимого для масляной флотации расслаивания. Окончание процесса расслаивания оценивают визуально, по снижению мутности в нижней фракции. Низкая температура кипения углеводорода (менее 40°С) требует дополнительного термостатирования при интенсивном перемешивании. Температура выше 70°С не позволит произвести отгонку верхней фракции для регенерации полисорбата и углеводорода.

Проведенные исследования показали, что снижение концентрации этанола в полученном гидрозоле нанокремнезема способствует увеличению прочности бетона. Результат показателей, сравнительный с прототипом, отражен в таблице 3.

При необходимости экономии гидрозоля нанокремнезема и при превышении прочности бетона выше необходимой, можно снижать количество введенного нанокремнезема. Ухудшение прочих физико-механических свойств не происходило.

Пример 1

Замешивали реакционную смесь, состоящую из этанола (64% от общей массы) и воды (15% от общей массы), с добавлением полиоксиэтилен сорбитан моноолеат (ТВИН-80) (15% от общей массы) в качестве стабилизатора. После полного видимого растворения добавляли тетраэтоксисилан (6% от общей массы). Далее происходило смешивание компонентов в нормальных условиях (в течение 30 мин.); затем производили гидролиз - добавление по каплям нашатырного спирта и поддерживание уровня рН=8 в течение 90 мин. Далее проводилась отгонка этанола (с его конденсацией в сборнике) при температуре 60°С и одновременный постепенный подвод воды в течение 180 минут из расчета получаемой концентрации нанокремнезема 0,1% от общей массы раствора. Концентрация этанола в растворе контролировалось рефрактометрически и по количеству конденсата в сборнике. Затем добавляли петролейный эфир (марки 40-70 по ТУ 6-02-1244-83), перемешивали не менее 10 минут при скорости не менее 10000 об/мин. Полученная эмульсия расслаивалась в делительной воронке в течение 3 суток. Далее отделялась нижняя фракция, представляющая собой гидрозоль нанокремнезема. Испытание мелкозернистого бетона (соотношение цемент : песок : вода 1:3:0,5), приготовленного при добавлении нанокремнезема 0,1% от массы цемента, показывает увеличение прочности на сжатие по сравнению с контрольным составом на 41% (42,3 МПа) (таблица 3).

Верхняя фракция, представляющая собой смесь полисорбата и петролейного эфира, была разделена при помощи отгонки петролейного эфира при температуре 90°С, что позволило использовать их повторно.

Пример 2

Замешивали реакционную смесь, состоящую из этанола (64% от общей массы) и воды (15% от общей массы), с добавлением полиоксиэтилен сорбитан моноолеат (ТВИН-80) (15% от общей массы) в качестве стабилизатора. После полного видимого растворения добавляли тетраэтоксисилан (6% от общей массы). Далее происходило смешивание компонентов в нормальных условиях (в течение 30 мин.); затем производили гидролиз - добавление по каплям нашатырного спирта и поддерживание уровня рН=8 в течение 90 мин. Далее проводилась отгонка этанола (с его конденсацией в сборнике) при температуре 60°С и одновременный постепенный подвод воды по каплям в течение 180 минут из расчета получаемой концентрации нанокремнезема 0,1% от общей массы раствора. Концентрация этанола в растворе контролировалось рефрактометрически и по количеству конденсата в сборнике. Затем добавлялся гексан (технический), перемешивался не менее 10 минут при скорости не менее 10000 об/мин. Полученная эмульсия расслаивалась центрифугированием (при 3000 об/мин, длительностью 60 мин). Далее отделялась нижняя фракция, представляющая собой гидрозоль нанокремнезема. Испытание мелкозернистого бетона (соотношение цемент : песок : вода 1:3:0,5), приготовленного при добавлении нанокремнезема 0,05% от массы цемента, показывает увеличение прочности на сжатие по сравнению с контрольным составом на 26% (37,9 МПа) (таблица 3).

Верхняя фракция, представляющая собой смесь полисорбата и гексана, была разделена при помощи отгонки гексана при температуре 80°С, что позволило использовать их повторно.

Применение предлагаемого способа позволяет получить гидрозоль монодисперсного нанокремнезема с малым количеством этанола (не более 0,1%), готового к использованию при изготовлении качественного, прочного бетона.

Таким образом, задача, стоящая перед изобретением, решена.

Влияние этанола на прочность бетона (Соотношение цемент : песок : вода = 1:3:0,5 с добавкой нанокремнезема 0,01% от массы цемента).

Сравнение применяемых стабилизаторов для получения нанокремнезема в этаноле в стандартных условиях (25°C).

Сравнение бетонов с добавкой нанокремнезема по показателю прочности на сжатие.

Способ получения гидрозоля монодисперсного нанокремнезема для изготовления бетона, включающий получение гидрозоля путем использования золь-гель синтеза, в котором в реакционной смеси используют аммиак в качестве катализатора для гидролиза тетраэтоксисилана и этанол в качестве растворителя, в реакционную смесь перед синтезом добавляют полисорбат в качестве стабилизатора, отличающийся тем, что затем этанол отгоняют при нагреве с одновременным подводом воды, после чего полисорбат удаляют из полученного гидрозоля нанокремнезема путем масляной флотации с добавлением легкого алифатического предельного углеводорода с плотностью менее 700 кг/м и температурой кипения в районе 40-70°С и отстаивают до полного разделения на две фракции, нижняя из которых представляет собой гидрозоль монодисперсного нанокремнезема, а верхняя фракция представляет собой смесь легкого алифатического предельного углеводорода и полисорбата, которую разделяют при помощи отгонки.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 140.
09.05.2019
№219.017.49fe

Дезинтегратор

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Дезинтегратор содержит цилиндрический корпус 1 с осевым 2 загрузочным и тангенциальным 3 разгрузочным...
Тип: Изобретение
Номер охранного документа: 0002687195
Дата охранного документа: 07.05.2019
09.05.2019
№219.017.4a01

Центробежная мельница

Изобретение относится к устройствам для измельчения абразивных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Центробежная мельница содержит два корпуса 1, размещенных в одной плоскости и соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002687166
Дата охранного документа: 07.05.2019
09.05.2019
№219.017.4a17

Дезинтегратор

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Дезинтегратор содержит цилиндрический корпус 1 с осевым загрузочным и тангенциальным разгрузочным устройствами....
Тип: Изобретение
Номер охранного документа: 0002687165
Дата охранного документа: 07.05.2019
09.05.2019
№219.017.4a55

Центробежный смеситель для сыпучих материалов

Изобретение относится к устройствам для перемешивания сыпучих материалов и может быть использовано в химической, пищевой и промышленности строительных материалов. Центробежный смеситель для сыпучих материалов содержит вертикальный цилиндрический корпус с загрузочным и разгрузочным патрубками,...
Тип: Изобретение
Номер охранного документа: 0002686944
Дата охранного документа: 06.05.2019
17.05.2019
№219.017.52c5

Дезинтегратор

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов. Дезинтегратор содержит цилиндрический корпус (1) с осевым (2) загрузочным и тангенциальным (3) разгрузочным устройствами. В цилиндрическом (1) корпусе...
Тип: Изобретение
Номер охранного документа: 0002687583
Дата охранного документа: 15.05.2019
29.05.2019
№219.017.6260

Дезинтегратор

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано в различных отраслях промышленности. Дезинтегратор содержит корпус (1) с установленными внутри него роторами (2, 3) и горизонтальными дисками (8, 10) и загрузочное устройство (4). На одной оси с...
Тип: Изобретение
Номер охранного документа: 0002688409
Дата охранного документа: 21.05.2019
06.06.2019
№219.017.73f9

Центробежная дисковая мельница

Изобретение относится к области оборудования для измельчения различных материалов и может быть использовано в строительной, химической, пищевой и других отраслях промышленности. Мельница содержит цилиндрический корпус (1) с загрузочным (2) и разгрузочным (3) патрубками и вращающиеся во...
Тип: Изобретение
Номер охранного документа: 0002690652
Дата охранного документа: 04.06.2019
15.06.2019
№219.017.8397

Центробежный дисковый измельчитель

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Устройство содержит цилиндрический корпус (1) с загрузочным (2) и разгрузочным (3) патрубками, противоположно...
Тип: Изобретение
Номер охранного документа: 0002691555
Дата охранного документа: 14.06.2019
27.06.2019
№219.017.9928

Устройство и способ переработки техногенных волокнистых материалов для получения фибронаполнителей (варианты)

Группа изобретений относится к вариантам устройства и способа переработки волокнистых материалов. Устройство и способ могут быть использованы при получении фибронаполнителей для теплоэнергетической, строительной, сельскохозяйственной и других отраслей промышленности. Устройство по первому...
Тип: Изобретение
Номер охранного документа: 0002692624
Дата охранного документа: 25.06.2019
06.07.2019
№219.017.a6ec

Сырьевая смесь для изделий из модифицированного цитрогипса и способ их изготовления

Настоящее изобретение относится к области производства строительных материалов и может быть использовано при производстве гипсовых изделий. Технический результат-повышение прочности изделий из модифицированного цитрогипса. Сырьевая смесь для изделий из модифицированного цитрогипса содержит...
Тип: Изобретение
Номер охранного документа: 0002693808
Дата охранного документа: 04.07.2019
Показаны записи 31-31 из 31.
22.05.2023
№223.018.6ba3

Сырьевая смесь для геополимерного пенобетона и способ ее получения

Группа изобретений относится к промышленности строительных материалов, а именно к сырьевой смеси для геополимерного пенобетона и способу ее получения. Сырьевая смесь для геополимерного пенобетона включает, мас.%: золу-уноса низкокальциевую с удельной поверхностью 1850 см/г 50,5-52,9, каолин с...
Тип: Изобретение
Номер охранного документа: 0002795802
Дата охранного документа: 11.05.2023
+ добавить свой РИД