×
02.10.2019
219.017.cc14

Результат интеллектуальной деятельности: СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УГЛОМ КРЕНА И ОГРАНИЧЕНИЯ УГЛОВОЙ СКОРОСТИ КРЕНА ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата содержит задатчик угла крена, вычислитель автопилота угла крена, алгебраический селектор, сервопривод элеронов летательного аппарата, датчик угла крена летательного аппарата, задатчик максимальной угловой скорости крена, вычислитель автомата ограничения угловой скорости крена, датчик угловой скорости крена летательного аппарата, датчик положения ручки управления летчика, вычислитель максимальной угловой скорости крена, датчик высоты полета, датчик числа М, датчик угла атаки, датчик угла скольжения, датчик положения элеронов, соединенные определенным образом. Обеспечивается максимально допустимая угловая скорость крена для заданных условий полета. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области систем автоматического управления (САУ) углом крена летательного аппарата (ЛА).

Известны САУ, обеспечивающие отработку заданного угла крена ЛА с помощью автопилота, воздействующего на угол отклонения элеронов ЛА [Боднер В.А. Системы управления летательными аппаратами. - М.: Машиностроение, 1973. - 506 с. Стр. 116, рис. 3.22], [Красовский А.А. Системы автоматического управления полетом и их аналитическое конструирование. - М.: Наука, 1973. - 560 с. Стр. 184, рис. 5.5], [Михалев И.А., Окоемов Б.Н., Чикулаев М.С. Системы автоматического управления самолетом. - М.: Машиностроение, 1987. - с. 240. Стр. 212, рис. 15.2].

Эти САУ за счет астатизма системы обеспечивают хорошую точность поддержания заданного значения угла крена. Однако они не позволяют ограничить максимальное значение угловой скорости крена ЛА.

Как известно, интенсивное вращение по крену (ωx≠0) приводит за счет аэроинерционного взаимодействия продольного и бокового движения к уменьшению степени устойчивости самолета на малых и умеренных углах атаки. При достаточно больших, так называемых критических угловых скоростях крена ωх кр, устойчивость теряется и развивается движение с резким изменением углов атаки и скольжения, большой амплитудой перегрузки, действующей на самолет, и нарастанием самой угловой скорости ωх. Эта форма движения называется аэроинерционным вращением и характерна для скоростных самолетов. Для предотвращения выхода на аэроинерционное самовращение в полете ограничивают допустимые угловые скорости ωх д. [Аэромеханика самолета: Динамика полета / Под ред. А.Ф. Бочкарева и В. В. Андриевского. - М.: Машиностроение, 1985. - 360 с. Стр. 343-344.].

Наиболее близкой по достигаемому техническому результату, выбранной в качестве прототипа, принимается система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата, содержащая последовательно соединенные задатчик угла крена и вычислитель автопилота угла крена, сервопривод, выходной сигнал которого определяет угол отклонения элеронов летательного аппарата, датчик угла крена летательного аппарата, имеющий выход, подключенный ко второму входу вычислителя автопилота угла крена, датчик угловой скорости крена летательного аппарата, имеющий выход, подключенный к третьему входу вычислителя автопилота угла крена. Кроме того, система содержит последовательно соединенные задатчик максимальной угловой скорости крена, вычислитель автомата ограничения угловой скорости крена и алгебраический селектор максимального сигнала, выход которого подключен к входу сервопривода, а второй вход вычислителя автомата ограничения угловой скорости крена соединен с выходом датчика угловой скорости крена, выход вычислителя автопилота угла крена подключен ко второму входу алгебраического селектора максимального сигнала. [Патент РФ №2430858 на изобретение: МПК 8 В64С 13/18, G05D 1/08. Система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата / В.И. Петунии, Э.Ю. Абдуллина, В.Н. Ефанов. - Заявка №2010107596/11; Заявл. 02.03.2010; Зарегистр. в Государственном реестре изобретений РФ 10.10.2011. Бюл. №28.].

Эта система обеспечивает ограничение угловой скорости крена и плавные переходные процессы в САУ углом крена ЛА за счет включения автомата ограничения фиксированного значения максимальной угловой скорости с помощью алгебраического селектора.

Однако значение максимальной угловой скорости крена на режиме аэроинерционного самовращения ЛА не остается постоянным. Согласно работе [Динамика полета: Учебник для студентов вузов / Ефремов А.В., Захарченко В.Ф., Овчаренко В.Н. и др.; под ред. Г.С. Бюшгенса. - М: Машиностроение, 2011. - 776 с. Стр. 747], существование этого критического режима определяется неблагоприятным сочетанием следующих характеристик:

- знака и величины исходных углов атаки и скольжения;

- высоты и числа М полета;

- степени поперечной статической устойчивости самолета и характера ее зависимости от угла атаки;

- абсолютной величины и степени отличия первой критической скорости крена от второй (зависящих от частных особенностей аэродинамической и весовой компоновок самолета);

- положения органов управления в исходном режиме полета;

- значения скорости крена, которая может быть создана полным отклонением элеронов.

Следовательно, необходимо вычислять максимально допустимое значение угловой скорости угла крена ЛА в зависимости от условий полета. В зависимости от этого вычисленного значения можно допускать большую или меньшую скорость вращения, что обеспечит наилучшее использование динамических характеристик ЛА на различных режимах и условиях полета. При этом будет обеспечена безопасность выполнения вращения, поскольку максимально допустимые значения скорости вращения будут известны и САУ не допустит опасного к ним приближения.

Таким образом, задачей, на решение которой направлено заявляемое изобретение, является наилучшее использование динамических характеристик ЛА на различных режимах и условиях полета при обеспечении высокой надежности управления углом крена.

Технический результат - обеспечение максимально допустимой для данных условий полета угловой скорости крена ЛА за счет включения вычислителя максимальной угловой скорости крена и датчиков выходных параметров летательного аппарата.

Поставленная задача решается тем, что в систему автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата, содержащую последовательно соединенные задатчик угла крена, вычислитель автопилота угла крена, алгебраический селектор, сервопривод элеронов летательного аппарата и датчик угла крена летательного аппарата, имеющий выход, подключенный ко второму входу вычислителя автопилота угла крена, последовательно соединенные задатчик максимальной угловой скорости крена и вычислитель автомата ограничения угловой скорости крена, выход которого подключен ко второму входу алгебраического селектора, датчик угловой скорости крена летательного аппарата, имеющий выход, подключенный к третьему входу вычислителя автопилота угла крена и второму входу вычислителя автомата ограничения угловой скорости крена, в отличие от прототипа дополнительно введены датчик положения ручки управления летчика, выход которого подключен к входу задатчика угла крена, вычислитель максимальной угловой скорости крена, первый вход которого соединен с выходом датчика положения ручки управления летчика, второй вход - с выходом датчика высоты полета летательного аппарата, третий вход - с выходом датчика числа М летательного аппарата, четвертый вход - с выходом датчика угла атаки летательного аппарата, пятый вход - с выходом датчика угла скольжения летательного аппарата, шестой вход - с выходом датчика угловой скорости крена летательного аппарата, а выход которого подключен к входу задатчика максимальной угловой скорости крена.

Согласно изобретению в систему автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата может быть дополнительно введен датчик положения элеронов летательного аппарата, вход которого соединен с выходом сервопривода элеронов, а выход подключен к седьмому входу вычислителя максимальной угловой скорости крена.

Существо изобретения поясняется чертежами.

На фиг. 1 представлена структурная схема заявляемой системы автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата.

На фиг. 2 представлена зависимость угла отклонения элеронов от установившейся угловой скорости крена: [Динамика полета: Учебник для студентов вузов / Ефремов А.В., Захарченко В.Ф., Овчаренко В.Н. и др.; под ред. Г.С. Бюшгенса. - М.: Машиностроение, 2011. - 776 с. Стр. 746, рис. 20.9].

Система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата содержит последовательно соединенные задатчик угла крена 1, вычислитель автопилота угла крена 2, алгебраический селектор 3, сервопривод элеронов 4 летательного аппарата 5 и датчик угла крена 6 летательного аппарата 5, имеющий выход, подключенный ко второму входу вычислителя автопилота угла крена 2, последовательно соединенные задатчик максимальной угловой скорости крена 7 и вычислитель автомата ограничения угловой скорости крена 8, выход которого подключен ко второму входу алгебраического селектора 3, датчик угловой скорости крена 9 летательного аппарата 5, имеющий выход, подключенный к третьему входу вычислителя автопилота угла крена 2 и второму входу вычислителя автомата ограничения угловой скорости крена 8, отличающаяся тем, что дополнительно содержит датчик положения ручки управления летчика 10, выход которого подключен к входу задатчика угла крена 1, вычислитель максимальной угловой скорости крена 11, первый вход которого соединен с выходом датчика положения ручки управления летчика 10, второй вход - с выходом датчика высоты полета 12 летательного аппарата 5, третий вход - с выходом датчика числа М 13 летательного аппарата 5, четвертый вход - с выходом датчика угла атаки 14 летательного аппарата 5, пятый вход - с выходом датчика угла скольжения 15 летательного аппарата 5, шестой вход - с выходом датчика угловой скорости крена 9 летательного аппарата 5, а выход которого подключен к входу задатчика максимальной угловой скорости крена 7.

Система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата дополнительно содержит датчик положения элеронов 16 летательного аппарата 5, вход которого соединен с выходом сервопривода элеронов 4, а выход подключен к седьмому входу вычислителя максимальной угловой скорости крена 11.

Обеспечение наилучшего использования динамических характеристик ЛА на различных режимах и условиях полета при обеспечении безопасности управления углом крена достигается за счет введения в структуру САУ вычислителя максимальной угловой скорости крена и датчиков выходных параметров летательного аппарата.

Система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата работает следующим образом.

Летчик управляет углом крена ЛА путем отклонения ручки управления на угол αру, который измеряется с помощью датчика положения ручки управления летчика 10.

Сигнал заданного угла крена γзадзадру) с выхода задатчика угла крена 1 поступает на первый вход вычислителя автопилота угла крена 2, на второй вход которого поступает сигнал текущего значения угла крена γ с выхода датчика угла крена 6, а на третий вход - сигнал текущего значения угловой скорости крена ωx=рγ с выхода датчика угловой скорости крена 9. Здесь p=d/dt. На выходе вычислителя автопилота угла крена 2 формируется сигнал

поступающий на один из входов алгебраического селектора 3.

Сигнал заданной максимальной допустимой угловой скорости крена ωxmax с выхода задатчика максимальной угловой скорости крена 7 поступает на первый вход вычислителя автомата ограничения угловой скорости крена 8, на второй вход которого поступает сигнал текущего значения угловой скорости крена ωx с выхода датчика угловой скорости крена 9. На выходе вычислителя автомата ограничения угловой скорости крена 8 формируется сигнал

поступающий на другой из двух входов алгебраического селектора 3.

Для построения САУ с ограничением параметров ЛА используются логические устройства, реализующие алгоритмы логического выбора каналов. Такой выбор реализуется с помощью алгебраических селекторов [Петунии В.И. Синтез систем автоматического управления летательными аппаратами с автоматами ограничений предельных параметров // Изв. вузов. Приборостроение. 2010. Том 53. №10. - С. 18-24.]. Селекторы вводятся в САУ для плавного переключения каналов управления и обеспечивают во всех условиях работы управляющее воздействие только одного из нескольких каналов управления, включаемых в работу в зависимости от режима работы объекта управления. При этом каждый из каналов управления работает автономно, и его параметры обычно выбираются без учета взаимодействия с другими каналами. Это позволяет сохранить статическую точность и запасы устойчивости, свойственные отдельным каналам управления.

Следовательно, алгебраический селектор обеспечивает плавное переключение с одного канала на другой, например, с автопилота на автомат ограничения и обратно на автопилот.

В рассматриваемой системе используется селектор минимальных сигналов управления. Выходной сигнал алгебраического селектора 3

U=min(U1,U2)

поступает на вход астатического сервопривода элеронов 4 с передаточной функцией

изменяющего угол отклонения элеронов δэ летательного аппарата 5

δэ=Wсп(p)U,

и обеспечивающего поддержание соответствующего режима полета летательного аппарата 5 по углу крена и угловой скорости крена.

Для системы по п. 1.

Режимом инерционного вращения или аэроинерционного самовращения называют самопроизвольное движение самолета относительно трех осей с большой угловой скоростью и значительными угловыми ускорениями, сопровождающееся быстрым возрастанием положительных или отрицательных углов атаки и скольжения, а также нормальной и поперечной перегрузок. Этот критический режим может развиться при превышении более чем на (10…15) % максимально допустимой в эксплуатации скорости крена [Динамика полета: Учебник для студентов вузов / Ефремов А.В., Захарченко В.Ф., Овчаренко В.Н. и др.; под ред. Г.С. Бюшгенса. - М.: Машиностроение, 2011. - 776 с. Стр. 746, рис. 20.9].

Физической причиной возникновения этого режима являются аэродинамическое и инерционное взаимодействия продольного и бокового движений при вращении ЛА по крену.

Анализ динамики полета показывает, что в общем случае у самолета существуют две критические угловые скорости крена (фиг. 2)

где α - угол атаки; β - угол скольжения; и - аэродинамические моменты, определяющие продольную и путевую устойчивости самолета; mz и my - коэффициенты аэродинамических моментов; q=pV2/2 - скоростной напор; ρ=ρ(Н) - плотность воздуха; Н - высота полета; V=Ма - скорость полета; М - число Маха; а - скорость звука; S - площадь крыла; bА и - средняя аэродинамическая хорда и размах крыла; Ii - моменты инерции самолета.

При этих угловых скоростях периоды вращения самолета относительно продольной оси совпадают с периодами свободных недемпфированных колебаний относительно нормальной или поперечной осей (фиг. 2). По мере приближения угловой скорости вращения по крену к одной из критических скоростей степень проявления взаимодействия продольного и бокового движений будет увеличиваться, что может привести к потере устойчивости движения самолета.

Из приведенных формул следует, что с увеличением степени статической устойчивости самолета, его момента инерции относительно продольной оси и скоростного напора q и уменьшением моментов инерции относительно нормальной и поперечной осей самолета (точнее, разности моментов инерции Iy-Iх и Iz-Ix), повышаются критические скорости крена ωα, ωβ. С увеличением числа М и высоты полета критические скорости крена уменьшаются, причем одна из них ωβ - особенно сильно вследствие падения путевой устойчивости самолета при М>1 и уменьшения с высотой скоростного напора (при М = const).

На основании вышесказанного в вычислитель максимальной угловой скорости крена 11 вводится информация с датчиков положения ручки управления летчика 10, высоты полета 12, числа М 13, угла атаки 14, угла скольжения 15, угловой скорости крена 9.

В реальном полете опасность неблагоприятного проявления инерционного взаимодействия может существенно возрасти или, наоборот, понизиться в зависимости от того, как будут изменяться аэродинамические моменты самолета при скорости крена, меньшей min(ωα, ωβ), поскольку в процессе своего вращения самолет подвергается воздействию не только инерционных, но и аэродинамических моментов.

Следовательно, максимальное значение угловой скорости можно определить в вычислителе максимальной угловой скорости крена 11 по соотношению

ωx max=kmin(ωαβ),

где k<1 - коэффициент запаса, равный, например k=0,9.

Это значение угловой скорости можно рассматривать как максимальное, которое может быть далее введено в задатчик максимальной угловой скорости крена 7.

Если ωα и ωβ равны нулю, то согласно работе [Динамика полета: Учебник для студентов вузов / Ефремов А.В., Захарченко В.Ф., Овчаренко В.Н. и др.; под ред. Г.С. Бюшгенса. - М.: Машиностроение, 2011. - 776 с. Стр. 729], при этом сохраняется непрерывная связь между отклонением органа поперечного управления и возникающей угловой скоростью крена.

Для системы по п. 2.

На фиг. 2 показан характер изменения потребных для балансировки самолета в режиме установившегося вращения с различной скоростью крена углов отклонения элеронов при положительном и отрицательном исходных углах атаки и нулевом исходном угле скольжения. Видно, что в обоих случаях отсутствует линейная связь между скоростью крена и балансировочным углом отклонения элеронов. Однако при положительных исходных углах атаки и балансировочная кривая с увеличением скорости крена отклоняется вверх, что затрудняет рост угловой скорости самолета до первой критической скорости min(ωα, ωβ). При отрицательных исходных углах атаки и на балансировочной кривой в докритической области скоростей крена при ωx≅ωx0 появляется характерная «ложка»

и далее с увеличением ωxхх0) нарастает тенденция к самопроизвольной раскрутке и переходу на скорости крена, большие max(ωα, ωβ). Возникающие при этом балансировочные режимы вращения с угловой скоростью крена, превышающей max(ωα, ωβ), при неотклоненных элеронах и называют режимами инерционного вращения.

Следовательно, при наличии датчика положения элеронов 16 в вычислителе максимальной угловой скорости крена 11 можно определить по соотношению

значение угловой скорости, соответствующее точке экстремума

ωxx0.

Это значение угловой скорости можно рассматривать как максимальное, которое может быть далее введено в задатчик максимальной угловой скорости крена 7.

ωx maxx0.

Этот результат вычисления, очевидно, является более точным, чем для системы по п. 1.

Введение вычисленного значения максимальной угловой скорости крена должно осуществляться дискретно с фиксацией этого значения в зависимости от изменения положения ручки управления летчика и изменения угловой скорости крена. Это необходимо для исключения влияния обратных связей по выходным координатам летательного аппарата на динамические характеристики, обеспечения устойчивости и качества системы автоматического управления углом курса.

Итак, заявляемое изобретение позволяет, благодаря введению в структуру САУ углом крена и ограничения угловой скорости крена ЛА вычислителя максимальной угловой скорости крена и датчиков выходных параметров, реализовать максимально допустимую на различных режимах и в различных условиях полета угловую скорость вращения ЛА при обеспечении безопасности пилотирования.


СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УГЛОМ КРЕНА И ОГРАНИЧЕНИЯ УГЛОВОЙ СКОРОСТИ КРЕНА ЛЕТАТЕЛЬНОГО АППАРАТА
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УГЛОМ КРЕНА И ОГРАНИЧЕНИЯ УГЛОВОЙ СКОРОСТИ КРЕНА ЛЕТАТЕЛЬНОГО АППАРАТА
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УГЛОМ КРЕНА И ОГРАНИЧЕНИЯ УГЛОВОЙ СКОРОСТИ КРЕНА ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 131-140 из 146.
12.04.2023
№223.018.424c

Способ обработки поверхности на стальных деталях

Изобретение относится к металлургической промышленности, а именно к комбинированной упрочняющей химико-термической обработке поверхности стальных изделий и инструмента, работающих в условиях локального изнашивания. Способ обработки изношенных локальных участков поверхности стальной детали...
Тип: Изобретение
Номер охранного документа: 0002766388
Дата охранного документа: 15.03.2022
12.04.2023
№223.018.42b0

Разъемный гребной винт

Изобретение относится к области судостроения, а именно к водоходным движителям, обеспечивающим движение и маневрирование судна. Гребной винт содержит ступицу и как минимум две съемные лопасти, каждая из которых имеет корневую часть, выполненную с фасонной поверхностью типа «ласточкин хвост» для...
Тип: Изобретение
Номер охранного документа: 0002757989
Дата охранного документа: 25.10.2021
12.04.2023
№223.018.46ca

Универсальный шариковый расходомер жидкости

Изобретение относится к измерительной технике и может использоваться в расходометрии любых жидкостей - электропроводных и неэлектропроводных, прозрачных и непрозрачных, химически агрессивных и пожароопасных, взрывоопасных, ядовитых и опасных для окружающей среды - в химической, нефтедобывающей...
Тип: Изобретение
Номер охранного документа: 0002761416
Дата охранного документа: 08.12.2021
12.04.2023
№223.018.470f

Цифровой преобразователь расхода электропроводной жидкости

Изобретение относится к измерительной технике и электронному приборостроению и может быть использовано в расходометрии электропроводных жидкостей, например воды и водных растворов солей, щелочей и кислот, электропроводных органических и неорганических химических соединений. Преобразователь...
Тип: Изобретение
Номер охранного документа: 0002755715
Дата охранного документа: 20.09.2021
23.04.2023
№223.018.5203

Способ получения сорбента для очистки воды от нефтезагрязнений

Изобретение относится к получению сорбентов для очистки воды от нефтепродуктов. Сущность изобретения: экстрагированную сечку сахарной свеклы подвергают высушиванию до содержания влаги не более 10 мас.%, измельчают с получением частиц заданного гранулометрического состава. Высушенное и...
Тип: Изобретение
Номер охранного документа: 0002732274
Дата охранного документа: 14.09.2020
09.05.2023
№223.018.52d9

Интегральный перестраиваемый излучатель оптического вихревого пучка

Изобретение относится к оптике, в частности к лазерной технике, и может быть использовано в радиофотонных и оптических системах связи. Интегральный перестраиваемый излучатель оптического вихревого пучка содержит прямой оптический волновод, микрокольцевой резонатор радиусом 30 мкм с глухими...
Тип: Изобретение
Номер охранного документа: 0002795166
Дата охранного документа: 28.04.2023
14.05.2023
№223.018.5544

Способ сравнительной оценки загрязнения воздуха по высшим растениям

Изобретение относится к области защиты окружающей среды и может быть использовано в биоиндикации атмосферного воздуха. Оценку загрязнения воздуха по высшим растениям проводят по сравнению усредненных величин модулей разницы фрактальной размерности правой и левой части листьев. При отличии...
Тип: Изобретение
Номер охранного документа: 0002736935
Дата охранного документа: 23.11.2020
15.05.2023
№223.018.5910

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к способу комбинированной обработки изделия из быстрорежущей стали. Способ включает создание ультрамелкодисперсной структуры посредством холодной осадки, закалку при температуре 900-1100°С, ионное азотирование стального изделия, при этом после закалки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002760515
Дата охранного документа: 25.11.2021
15.05.2023
№223.018.5911

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к способу комбинированной обработки изделия из быстрорежущей стали. Способ включает создание ультрамелкодисперсной структуры посредством холодной осадки, закалку при температуре 900-1100°С, ионное азотирование стального изделия, при этом после закалки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002760515
Дата охранного документа: 25.11.2021
16.05.2023
№223.018.5dab

Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой...
Тип: Изобретение
Номер охранного документа: 0002757352
Дата охранного документа: 14.10.2021
Показаны записи 1-7 из 7.
20.08.2015
№216.013.72cc

Система автоматического управления углом тангажа и ограничения предельных значений параметров летательного аппарата

Система автоматического управления углом тангажа и ограничения предельных значений параметров летательного аппарата содержит задатчик угла тангажа, вычислитель автопилота угла тангажа, алгебраический селектор, сервопривод руля высоты, датчик угла тангажа, задатчик максимального угла атаки,...
Тип: Изобретение
Номер охранного документа: 0002560958
Дата охранного документа: 20.08.2015
13.01.2017
№217.015.6dc7

Способ формирования траектории полета информационного летательного аппарата и устройство для его осуществления

Группа изобретений относится к способу и устройству для формирования траектории летательного аппарата. Для формирования траектории летательного аппарата в блок памяти передают сигналы, пропорциональные координатам, курсу и горизонтальной скорости цели, запоминают их на момент поступления,...
Тип: Изобретение
Номер охранного документа: 0002597309
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.83de

Помехоустойчивый самонастраивающийся измеритель температуры газа газотурбинного двигателя

Использование: в системах измерения температуры газа газотурбинных двигателей (ГТД). Технический результат: повышение помехоустойчивости измерителя температуры газа ГТД. Данный измеритель содержит первое пропорциональное звено, вход которого соединен с выходом дифференциатора, а выход подключен...
Тип: Изобретение
Номер охранного документа: 0002601712
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.c420

Измеритель температуры газа газотурбинного двигателя

Использование - в системах измерения температуры газа газотурбинных двигателей (ГТД). Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах. Сущность изобретения: измеритель температуры газа газотурбинного двигателя дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002617221
Дата охранного документа: 24.04.2017
14.03.2019
№219.016.df01

Система автоматического управления углом курса и ограничения угла крена летательного аппарата

Система автоматического управления углом курса и ограничения угла крена летательного аппарата содержит задатчик угла курса, четыре элемента сравнения, вычислитель заданного угла крена, алгебраический селектор минимального сигнала, вычислитель автопилота угла крена, сервопривод элеронов, датчик...
Тип: Изобретение
Номер охранного документа: 0002681817
Дата охранного документа: 12.03.2019
27.04.2019
№219.017.3ce5

Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата

Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата содержит задатчик угла тангажа, вычислитель автопилота угла тангажа, задатчик максимального угла атаки, два вычислителя автомата ограничения угла атаки, алгебраические селекторы максимального и...
Тип: Изобретение
Номер охранного документа: 0002686378
Дата охранного документа: 25.04.2019
25.07.2019
№219.017.b88c

Система автоматического управления углом крена со статическим автопилотом и с ограничением угловой скорости крена летательного аппарата

Система автоматического управления углом крена со статическим автопилотом и с ограничением угловой скорости крена летательного аппарата содержит задатчик угла крена, задатчик максимальной угловой скорости крена и вычислитель автомата ограничения угловой скорости крена, датчик угла крена...
Тип: Изобретение
Номер охранного документа: 0002695474
Дата охранного документа: 23.07.2019
+ добавить свой РИД