×
12.09.2019
219.017.ca4b

СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к получению наноразмерного порошка феррита меди(II). Способ включает приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг. Реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в стехиометрическом молярном соотношении (1:2), в 10% растворе декстрана 40 или 6% растворе декстрана 70. Получение осадка в виде порошка ведут путем перемешивания полученного реакционного раствора с сильноосновным гелевым анионитом АВ-17-8 или А-400 в гидроксильной форме при температуре 60°С в течение 1 ч. Обжиг производят при температуре 800°С в течение 2 ч. Обеспечивается получение однофазного наноразмерного порошка феррита меди (II). 4 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения наночастиц феррита меди (II) со структурой тетрагональной шпинели, которые могут найти применение в качестве высокоплотных носителей информации, ферромагнитных жидкостей, катализаторов.

Известен способ получения феррита меди (II) [RU №2451638, C01G 3/00, C01G 49/00, опубл. 27.05.2012], который включает дозирование исходных оксидов железа (III), меди (II) и минерализатора хлорида калия в количестве 0,5-1,5 масс. % от веса оксидов, их гомогенизацию в агатовой ступке в присутствии этилового спирта в течение одного часа, брикетирование в таблетки диаметром 20 мм под давлением 10 МПа и прокаливание в течение 20-28 часов при температуре 850-1000°С. Полученный материал размалывают до размера зерен 315 мкм и отмывают от хлорида калия до отрицательной реакции на хлорид-ионы.

К недостаткам данного способа можно отнести возможность загрязнения полученного продукта за счет износа шаров и корпуса мельницы, длительность термообработки, образование крупнодисперсного продукта, а также необходимость промывания осадка от хлорид-ионов.

Известен способ получения феррита меди золь-гель методом [I.V. Kasy Viswanath, Y.L.N. Murthy, Kondala Rao Tata. Synthesis and characterization of nanoferrites by citrate gel. Int. J. Chem. Sci.. 2013. V. 11. №1. P. 64-72], в котором навески Cu(NO3)2*3H2O и Fe(NO3)2*9H2O, взятые в стехиометрическом соотношении, растворяют и перемешивают в течение 1 ч для получения гомогенного раствора. Затем в систему добавляют лимонную кислоту в молярном соотношении к металлам 1:1 и небольшое количество NH3 до рН=7; интенсивно перемешивают до образования геля и высушивают при температуре 90°С. Полученный порошок промывают ацетоном и толуолом и обжигают при температуре 800°С в течение 2 ч. По данным рентгенофазового анализа, образуется чистая фаза феррита меди.

К недостаткам золь-гель метода можно отнести необходимость очистки полученного продукта органическими растворителями. Кроме того, по данным сканирующей электронной микроскопии, частицы образуют агломераты субмикронного размера с неправильной морфологией.

Известен способ получения феррита меди методом соосаждения [S.S. Kader, D.P. Paul, S.M. Hoque Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method / International Journal of Materials, Mechanics and Manufacturing. - 2014. - V. 2, №1. - P. 5-8]. В качестве исходных веществ использовали водные растворы нитратов меди(II) и железа(III), а в качестве - осадителя - гидроксид натрия. Осаждение осуществляли при перемешивании на магнитной мешалке (300 оборотов в сек), температура 200°C. Полученный осадок отфильтровывали, промывали деионизированной водой 10 раз, высушивали при температуре 100°C в течение 36 ч, и обжигали при температурах 200-1200°C. Формирование чистой фазы феррита происходит при температуре от 800°C.

К недостаткам данного способа можно отнести загрязненность продукта осадителем - гидроксидом натрия, большой расход электроэнергии, а также длительность процесса.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения феррита меди(II) [RU №2567652, опубл. 10.11.2015], который включает термообработку смеси оксидов железа(III) и меди(II) с добавлением нитрита натрия. Затем к полученной смеси добавляют раствор гидроксида натрия, отделяют смесь оксидов железа и меди от раствора, промывают дистиллированной водой и сушат до постоянной массы, после чего подвергают термической обработке.

Однако к недостаткам способа следует отнести возможность загрязнения полученного продукта осадителями (гидроксид натрия), кроме того, известный способ не позволяет получать наноразмерный материал и использовать его для создания стабильного водного коллоидного раствора магнитных наночастиц.

Технический результат изобретения - разработан метод получения феррита меди(II) ионообменным способом; улучшены характеристики порошков феррита меди за счет получения мелкодисперсного наноразмерного продукта.

Технический результат изобретения достигается тем, что в способе получения наноразмерного порошка феррита меди(II), включающем приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг, согласно изобретению, реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в стехиометрическом молярном соотношений (1:2), в 10% растворе декстрана 40 или 6% растворе декстрана 70, получение осадка в виде порошка ведут путем перемешивания полученного реакционного раствора с сильноосновным гелевым анионитом АВ-17-8 или А-400 в гидроксильной форме при температуре 60°С в течение 1 ч, причем обжиг производят при температуре 800°С в течение 2 ч.

Сравнительный анализ заявляемого изобретения и прототипа показывает, что отличительные признаки изобретения:

- в качестве солей используют нитраты меди(II) и железа(III), взятые в стехиометрическом молярном соотношении (1:2);

- смеси солей растворяют в полисахаридах, а именно в 10% растворе декстрана 40 или 6% растворе декстрана 70;

- в качестве осадителя используют сильноосновный гелевый анионит АВ-17-8 или А-400 в гидроксидной форме;

- синтез осуществляют при температуре 60°С в течение 1 ч;

- обжиг осуществляют при температуре 800°С в течение 2 ч

Применяя анионит АВ-17-8 или А-400 новым способом были получены образцы феррита меди. Благодаря указанным отличительным признакам удалось получить прекурсоры состава, близкого к стехиометрическому, что способствует образованию однофазного материала. Кроме того, предложенный способ приводит к образованию мелкодисперсного наноразмерного продукта.

Изобретение поясняется чертежами. На фиг. 1 показаны рентгеновские спектры феррита меди, полученного: а - с использованием полисахарида декстран-40 и анионита АВ-17-8 в качестве реагента-осадителя, б - с использованием полисахарида декстран-70 и анионита АВ-17-8 в качестве реагента-осадителя, в - с использованием полисахарида декстран-40 И анионита А-400 в качестве реагента-осадителя. На фиг. 2 представлены микрофотографии феррита меди, полученного с использованием 10% раствора декстрана-40 и анионита АВ-17-8 (а), 6% раствора декстрана-70 и анионита АВ-17-8 (б) и 10% раствора декстрана-40 и анионита А-400 (в). На фиг. 3 представлен спектр магнитно-кругового дихроизма образца феррита меди, полученного из нитратных солей меди(II) и железа(III) с использованием в качестве стабилизатора раствор декстрана-40. На фиг. 4 представлена зависимость намагниченности образца феррита меди от величины приложенного магнитного поля.

Заявляемый способ осуществляют следующим образом.

Анионит АВ-17-8 или А-400 (сильноосновные аниониты с полистирольной матрицей, содержащий остатки четвертичных аммониевых оснований - N+(CH3)3 (ГОСТ 20301-74) переводят в OH-форму, осуществляют контакт анионита с раствором полисахарида, содержащим ионы меди(II) и железа(III). Затем отделяют, промывают осадок и прокаливают.

Перевод анионита в OH-форму проводят, заливая исходный АВ-17-8 или А-400 в хлоридной форме 1М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH 3 раза, выдерживая каждую порцию в течение часа. После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°C. Перед использованием анионит на 5 минут заливают дистиллированной водой для набухания.

Массу анионита, необходимую для синтеза, рассчитывают по формуле:

где CCu2+, CFe3+ - концентрация исходных растворов меди(II) и железа(III), VCu2+, VFe3+ - объем исходных растворов меди(II) и железа(III); СОЕ - статическая обменная емкость, ммоль-экв⋅г-1, n1=3(n2=4,5) - молярное отношение функциональных групп ионита к Cu2+(Fe3+).

Рассчитанное количество анионита (АВ-17-8 или А-400) смешивают с 50 мл раствора полисахарида (10% раствор декстран-40 или 6% раствор декстран-70), содержащим 1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3. Смесь 1 ч перемешивают на шейкере со скоростью 120 мин-1 при температуре 60°C, после чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,16 мм. Для отделения осадка проводят центрифугирование. Полученные осадки высушивают при температуре 80°C в сушильном шкафу и прокаливают при температуре 800°C в течение 2 ч.

На фиг. 1 представлены рентгеновские спектры продуктов, обожженных при температуре 800°C. Во всех случаях пики на рентгенограммах <4,85>, <2,99>, <2,92>, <2,59>, <2,50>, <2,42>, <2,17>, <2,06>, <1,93>, <1,74>, <1,69>, <1,59>, <1,49>, <1,45> характерны для феррита меди. Пиков, характерных для других соединений, не наблюдается, что означает, что получены однофазные продукты.

На фиг. 2 представлены микрофотографии полученного феррита меди.

На фиг. 3 представлен спектр магнитно-кругового дихроизма образца феррита меди.

На фиг. 4 представлена зависимость намагниченности образца феррита меди от величины приложенного магнитного поля.

Пример 1. Получение наночастиц феррита меди из нитратных растворов меди(II) и железа(III) с использованием раствора декстрана-40 в качестве стабилизатора и анионита АВ-17-8 в OH-форме в качестве реагента-осадителя, при температуре обжига 800°C.

Навески солей (1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3) растворяли в 50 мл 10%-го раствора полисахарида декстран-40. К полученному раствору, добавляли порциями 32,0 г (8,0 г анионита через каждые 15 мин) набухшего в воде анионита АВ-17-8 при перемешивании на шейкере со скоростью 120 мин-1 и температуре 60°С в течение 1 ч.

Для разделения фаз пропускали смесь через сито с диаметром отверстий 0,16 мм (отделение анионита) и проводи центрифугирование (отделение прекурсоров). Прекурсоры высушивали при 80°C и подвергали отжигу при температуре 800°С в течение 2 часов.

Выход продукта составляет 96%. По данным РФ А (фиг. 1а), осадок представляет собой монофазу феррита меди(II).

По результатам просвечивающей электронной микроскопии (фиг. 2а), частицы продукта имеют размеры порядка 20-50 нм.

На фиг. 3 представлен спектр магнитно-кругового дихроизма образца. Наблюдаемые спектральные особенности и характер кривой согласуются с литературными данными для феррита меди. Полученные результаты подтверждают наличие в продукте ферримагнитно-упорядоченной фазы.

Пример 2. Получение порошка феррита меди из нитратных растворов меди(II) и железа(III) с использованием раствора декстрана-70 в качестве стабилизатора и анионита АВ-17-8 в OH-форме в качестве реагента-осадителя, при температуре обжига 800°С.

Навески солей (1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3) растворяли в 50 мл 6%-го раствора Полисахарида дектран-70. К полученному раствору, добавляли порциями 32,0 г (8,0 г анионита через каждые 15 мин) набухшего в воде анионита АВ-17-8 при перемешивании на шейкере со скоростью 120 мин-1 и температуре 60°С в течение 1 ч.

Для разделения фаз пропускали смесь через сито с диаметром отверстий 0,16 мм (отделение анионита) и проводи центрифугирование (отделение прекурсоров). Прекурсоры высушивали при 80°C и подвергали отжигу при температуре 800°C в течение 2 часов.

Выход продукта составляет 91%. По данным РФА (фиг. 1б), осадок представляет собой монофазу феррита меди(II).

По результатам просвечивающей электронной микроскопии (фиг. 2б), частицы продукта имеют размеры порядка 20-50 нм.

На фиг. 4 представлена зависимость намагниченности образца от величины приложенного магнитного поля, измеренная при Т=4,2 К. Характер кривой соответствует литературным данным для феррита меди(II) и подтверждает наличие в продукте ферримагнитно-упорядоченной фазы.

Пример 3. Получение порошка феррита меди из нитратных растворов меди(II) и железа(III) с использованием раствора декстрана-40 в качестве стабилизатора и анионита А-400 в OH-форме в качестве реагента-осадителя, при температуре обжига 800°С.

Навески солей (1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3) растворяли в 50 мл 6%-го раствора полисахарида дектран-70. К полученному раствору, добавляли порциями 32,0 г (8,0 г анионита через каждые 15 мин) набухшего в воде анионита А-400 при перемешивании на шейкере со скоростью 120 мин-1 и температуре 60°С в течение 1 ч.

Для разделения фаз пропускали смесь через сито с диаметром отверстий 0,16 мм (отделение анионита) и проводили центрифугирование (отделение прекурсоров). Прекурсоры высушивали при 80°C и подвергали отжигу при температуре 800°C в течение 2 часов.

Выход продукта составляет 95%. По данным РФА (фиг. 1в), осадок представляет собой монофазу феррита меди(II).

По результатам просвечивающей электронной микроскопии (фиг. 2в), частицы продукта имеют размер 20-50 нм.

Магнитные характеристики продукта полностью идентичны магнитным характеристикам образцов, полученных по методикам, описанным в примерах 1 и 2.

Таким образом, разработан ионообменный способ получения наноразмерных порошков феррита меди(II). Благодаря данному способу удалось улучшить характеристики порошков ферритов за счет получения однофазного мелкодисперсного наноразмерного продукта.

Способ получения наноразмерного порошка феррита меди(II), включающий приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг, отличающийся тем, что реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в стехиометрическом молярном соотношении (1:2), в 10% растворе декстрана 40 или 6% растворе декстрана 70, получение осадка в виде порошка ведут путем перемешивания полученного реакционного раствора с сильноосновным гелевым анионитом АВ-17-8 или А-400 в гидроксильной форме при температуре 60°С в течение 1 ч, причем обжиг производят при температуре 800°С в течение 2 ч.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)
Источник поступления информации: Роспатент

Показаны записи 11-20 из 60.
13.02.2018
№218.016.2166

Способ сульфатирования органосольвентного лигнина

Изобретение относится к области химической технологии и предназначено для получения водорастворимых аммониевых или солей щелочных металлов сернокислых эфиров лигнинов, которые могут быть использованы как добавки в химических составах для регулирования свойств промывочных жидкостей при бурении...
Тип: Изобретение
Номер охранного документа: 0002641758
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.32c6

Резинополимерный материал для внутренней футеровки гидроциклонов

Изобретение относится к изготовлению футеровок внутренней части гидроциклонов - песковых насадок, работающих в водной среде и среде слабых растворов кислот и щелочей для обеспечения защиты от абразивного износа. Композиционный материал включает комбинацию стереорегулярного...
Тип: Изобретение
Номер охранного документа: 0002645503
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.366f

Способ получения оксиборатов cumn gabo

Изобретение относится к технологии получения новых магнитных материалов - оксиборатов CuMnGaBO (0≤x<1), включающих ионы переходных металлов, которые могут найти применение в химической промышленности, развитии магнитных информационных технологий, создании магнитных датчиков. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002646429
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.42c1

Способ получения субмикронных порошков феррита кобальта (ii)

Изобретение может быть использовано в электронике, в производстве телекоммуникационного оборудования и электродвигателей. Способ получения субмикронных порошков феррита кобальта(II) включает приготовление исходных реакционных водных растворов, содержащих соли кобальта и железа. В качестве солей...
Тип: Изобретение
Номер охранного документа: 0002649443
Дата охранного документа: 03.04.2018
09.06.2018
№218.016.5b07

Способ получения на подложке пленок с ферромагнитными кластерами mngeo в матрице geo

Изобретение относится к способу получения на подложке пленок с ферромагнитными кластерами MnGeO в матрице GeO при низких температурах. Получаемая MnGeO фаза может быть использована в качестве элементов спинтроники. Способ включает подготовку подложки, нанесение на нее слоя германийсодержащего...
Тип: Изобретение
Номер охранного документа: 0002655507
Дата охранного документа: 28.05.2018
16.06.2018
№218.016.62db

Способ комплексной переработки коры лиственницы

Изобретение относится к химической переработке древесных отходов, в частности, к комплексной переработке коры лиственницы с получением ценных химических продуктов. Способ комплексной переработки коры лиственницы сибирской, включающий измельчение коры, экстракцию неполярным растворителем...
Тип: Изобретение
Номер охранного документа: 0002657427
Дата охранного документа: 13.06.2018
28.06.2018
№218.016.684a

Способ получения сукцината аллобетулина

Изобретение относится к способу получения сукцината аллобетулина формулы: ацилированием аллобетулина с очисткой целевого продукта растворением в хлороформе и пропусканием через колонку с оксидом алюминия, в качестве ацилирующего агента используют янтарную кислоту, при этом ацилирование...
Тип: Изобретение
Номер охранного документа: 0002658838
Дата охранного документа: 25.06.2018
08.07.2018
№218.016.6d94

Способ получения медьсодержащих производных сульфата арабиногалактана

Изобретение относится к фармацевтической промышленности, а именно к способу получения медьсодержащих производных сульфата арабиногалактана. Способ получения медьсодержащих производных сульфата арабиногалактана, заключающийся в том, что к водному раствору, содержащему сульфат арабиногалактана,...
Тип: Изобретение
Номер охранного документа: 0002660560
Дата охранного документа: 06.07.2018
13.07.2018
№218.016.70df

Способ получения тонких магнитных наногранулированных пленок

Изобретение относится к способу получения тонких магнитных наногранулированных пленок. Способ включает последовательное осаждение на термостойкую подложку тонкой пленки оксида ферромагнитного металла и слоя металла-восстановителя при комнатной температуре с последующим вакуумным отжигом...
Тип: Изобретение
Номер охранного документа: 0002661160
Дата охранного документа: 12.07.2018
01.09.2018
№218.016.81ef

Способ сульфатирования органосольвентного лигнина

Изобретение относится к области химической технологии и предназначено для получения водорастворимых аммониевых или натриевых солей сернокислых эфиров лигнинов, которые могут быть использованы в качестве химических добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и...
Тип: Изобретение
Номер охранного документа: 0002665576
Дата охранного документа: 31.08.2018
Показаны записи 1-7 из 7.
20.05.2013
№216.012.40bd

Способ получения алюмоникелевого пигмента

Изобретение может быть использовано в производстве термостойких пигментов для декорирования различных изделий из фарфора, фаянса, стекла, пластмасс. Способ получения алюмоникелевого пигмента включает приготовление исходных реакционных водных растворов, содержащих соль алюминия (III) и соль...
Тип: Изобретение
Номер охранного документа: 0002482143
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4755

Способ получения наноразмерного порошка кобальта

Изобретение относится к порошковой металлургии. Предложен способ получения наноразмерного порошка кобальта, включающий термическое разложение кобальтсодержащего прекурсора в углеводородном масле, получение осадка, его отделение и промывку гексаном. В качестве кобальтсодержащего прекурсора...
Тип: Изобретение
Номер охранного документа: 0002483841
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.480d

Способ получения синего алюмокобальтового пигмента

Изобретение относится к способу получения кобальтового пигмента и может быть использовано для производства лакокрасочных материалов, различного вида керамики, а также для проведения художественных и реставрационных работ. Техническим результатом изобретения является разработка ионообменного...
Тип: Изобретение
Номер охранного документа: 0002484025
Дата охранного документа: 10.06.2013
20.03.2014
№216.012.ab86

Способ получения наноразмерного порошка железоиттриевого граната

Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III). Сначала реагент-осадитель, в качестве...
Тип: Изобретение
Номер охранного документа: 0002509625
Дата охранного документа: 20.03.2014
27.02.2016
№216.014.bfe7

Способ получения наноразмерного порошка алюмоиттриевого граната

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве...
Тип: Изобретение
Номер охранного документа: 0002576271
Дата охранного документа: 27.02.2016
10.06.2016
№216.015.4878

Способ получения высокодисперсных порошков оксида индия

Изобретение относится к способу получения высокодисперсных порошков оксида индия InО, которые могут быть использованы в качестве полупроводников и газовых сенсоров. Способ получения субмикронного порошка оксида индия включает приготовление исходного водного раствора сульфата индия, который...
Тип: Изобретение
Номер охранного документа: 0002587083
Дата охранного документа: 10.06.2016
10.05.2018
№218.016.42c1

Способ получения субмикронных порошков феррита кобальта (ii)

Изобретение может быть использовано в электронике, в производстве телекоммуникационного оборудования и электродвигателей. Способ получения субмикронных порошков феррита кобальта(II) включает приготовление исходных реакционных водных растворов, содержащих соли кобальта и железа. В качестве солей...
Тип: Изобретение
Номер охранного документа: 0002649443
Дата охранного документа: 03.04.2018
+ добавить свой РИД