×
12.09.2019
219.017.ca4b

СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к получению наноразмерного порошка феррита меди(II). Способ включает приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг. Реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в стехиометрическом молярном соотношении (1:2), в 10% растворе декстрана 40 или 6% растворе декстрана 70. Получение осадка в виде порошка ведут путем перемешивания полученного реакционного раствора с сильноосновным гелевым анионитом АВ-17-8 или А-400 в гидроксильной форме при температуре 60°С в течение 1 ч. Обжиг производят при температуре 800°С в течение 2 ч. Обеспечивается получение однофазного наноразмерного порошка феррита меди (II). 4 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения наночастиц феррита меди (II) со структурой тетрагональной шпинели, которые могут найти применение в качестве высокоплотных носителей информации, ферромагнитных жидкостей, катализаторов.

Известен способ получения феррита меди (II) [RU №2451638, C01G 3/00, C01G 49/00, опубл. 27.05.2012], который включает дозирование исходных оксидов железа (III), меди (II) и минерализатора хлорида калия в количестве 0,5-1,5 масс. % от веса оксидов, их гомогенизацию в агатовой ступке в присутствии этилового спирта в течение одного часа, брикетирование в таблетки диаметром 20 мм под давлением 10 МПа и прокаливание в течение 20-28 часов при температуре 850-1000°С. Полученный материал размалывают до размера зерен 315 мкм и отмывают от хлорида калия до отрицательной реакции на хлорид-ионы.

К недостаткам данного способа можно отнести возможность загрязнения полученного продукта за счет износа шаров и корпуса мельницы, длительность термообработки, образование крупнодисперсного продукта, а также необходимость промывания осадка от хлорид-ионов.

Известен способ получения феррита меди золь-гель методом [I.V. Kasy Viswanath, Y.L.N. Murthy, Kondala Rao Tata. Synthesis and characterization of nanoferrites by citrate gel. Int. J. Chem. Sci.. 2013. V. 11. №1. P. 64-72], в котором навески Cu(NO3)2*3H2O и Fe(NO3)2*9H2O, взятые в стехиометрическом соотношении, растворяют и перемешивают в течение 1 ч для получения гомогенного раствора. Затем в систему добавляют лимонную кислоту в молярном соотношении к металлам 1:1 и небольшое количество NH3 до рН=7; интенсивно перемешивают до образования геля и высушивают при температуре 90°С. Полученный порошок промывают ацетоном и толуолом и обжигают при температуре 800°С в течение 2 ч. По данным рентгенофазового анализа, образуется чистая фаза феррита меди.

К недостаткам золь-гель метода можно отнести необходимость очистки полученного продукта органическими растворителями. Кроме того, по данным сканирующей электронной микроскопии, частицы образуют агломераты субмикронного размера с неправильной морфологией.

Известен способ получения феррита меди методом соосаждения [S.S. Kader, D.P. Paul, S.M. Hoque Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method / International Journal of Materials, Mechanics and Manufacturing. - 2014. - V. 2, №1. - P. 5-8]. В качестве исходных веществ использовали водные растворы нитратов меди(II) и железа(III), а в качестве - осадителя - гидроксид натрия. Осаждение осуществляли при перемешивании на магнитной мешалке (300 оборотов в сек), температура 200°C. Полученный осадок отфильтровывали, промывали деионизированной водой 10 раз, высушивали при температуре 100°C в течение 36 ч, и обжигали при температурах 200-1200°C. Формирование чистой фазы феррита происходит при температуре от 800°C.

К недостаткам данного способа можно отнести загрязненность продукта осадителем - гидроксидом натрия, большой расход электроэнергии, а также длительность процесса.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения феррита меди(II) [RU №2567652, опубл. 10.11.2015], который включает термообработку смеси оксидов железа(III) и меди(II) с добавлением нитрита натрия. Затем к полученной смеси добавляют раствор гидроксида натрия, отделяют смесь оксидов железа и меди от раствора, промывают дистиллированной водой и сушат до постоянной массы, после чего подвергают термической обработке.

Однако к недостаткам способа следует отнести возможность загрязнения полученного продукта осадителями (гидроксид натрия), кроме того, известный способ не позволяет получать наноразмерный материал и использовать его для создания стабильного водного коллоидного раствора магнитных наночастиц.

Технический результат изобретения - разработан метод получения феррита меди(II) ионообменным способом; улучшены характеристики порошков феррита меди за счет получения мелкодисперсного наноразмерного продукта.

Технический результат изобретения достигается тем, что в способе получения наноразмерного порошка феррита меди(II), включающем приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг, согласно изобретению, реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в стехиометрическом молярном соотношений (1:2), в 10% растворе декстрана 40 или 6% растворе декстрана 70, получение осадка в виде порошка ведут путем перемешивания полученного реакционного раствора с сильноосновным гелевым анионитом АВ-17-8 или А-400 в гидроксильной форме при температуре 60°С в течение 1 ч, причем обжиг производят при температуре 800°С в течение 2 ч.

Сравнительный анализ заявляемого изобретения и прототипа показывает, что отличительные признаки изобретения:

- в качестве солей используют нитраты меди(II) и железа(III), взятые в стехиометрическом молярном соотношении (1:2);

- смеси солей растворяют в полисахаридах, а именно в 10% растворе декстрана 40 или 6% растворе декстрана 70;

- в качестве осадителя используют сильноосновный гелевый анионит АВ-17-8 или А-400 в гидроксидной форме;

- синтез осуществляют при температуре 60°С в течение 1 ч;

- обжиг осуществляют при температуре 800°С в течение 2 ч

Применяя анионит АВ-17-8 или А-400 новым способом были получены образцы феррита меди. Благодаря указанным отличительным признакам удалось получить прекурсоры состава, близкого к стехиометрическому, что способствует образованию однофазного материала. Кроме того, предложенный способ приводит к образованию мелкодисперсного наноразмерного продукта.

Изобретение поясняется чертежами. На фиг. 1 показаны рентгеновские спектры феррита меди, полученного: а - с использованием полисахарида декстран-40 и анионита АВ-17-8 в качестве реагента-осадителя, б - с использованием полисахарида декстран-70 и анионита АВ-17-8 в качестве реагента-осадителя, в - с использованием полисахарида декстран-40 И анионита А-400 в качестве реагента-осадителя. На фиг. 2 представлены микрофотографии феррита меди, полученного с использованием 10% раствора декстрана-40 и анионита АВ-17-8 (а), 6% раствора декстрана-70 и анионита АВ-17-8 (б) и 10% раствора декстрана-40 и анионита А-400 (в). На фиг. 3 представлен спектр магнитно-кругового дихроизма образца феррита меди, полученного из нитратных солей меди(II) и железа(III) с использованием в качестве стабилизатора раствор декстрана-40. На фиг. 4 представлена зависимость намагниченности образца феррита меди от величины приложенного магнитного поля.

Заявляемый способ осуществляют следующим образом.

Анионит АВ-17-8 или А-400 (сильноосновные аниониты с полистирольной матрицей, содержащий остатки четвертичных аммониевых оснований - N+(CH3)3 (ГОСТ 20301-74) переводят в OH-форму, осуществляют контакт анионита с раствором полисахарида, содержащим ионы меди(II) и железа(III). Затем отделяют, промывают осадок и прокаливают.

Перевод анионита в OH-форму проводят, заливая исходный АВ-17-8 или А-400 в хлоридной форме 1М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH 3 раза, выдерживая каждую порцию в течение часа. После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°C. Перед использованием анионит на 5 минут заливают дистиллированной водой для набухания.

Массу анионита, необходимую для синтеза, рассчитывают по формуле:

где CCu2+, CFe3+ - концентрация исходных растворов меди(II) и железа(III), VCu2+, VFe3+ - объем исходных растворов меди(II) и железа(III); СОЕ - статическая обменная емкость, ммоль-экв⋅г-1, n1=3(n2=4,5) - молярное отношение функциональных групп ионита к Cu2+(Fe3+).

Рассчитанное количество анионита (АВ-17-8 или А-400) смешивают с 50 мл раствора полисахарида (10% раствор декстран-40 или 6% раствор декстран-70), содержащим 1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3. Смесь 1 ч перемешивают на шейкере со скоростью 120 мин-1 при температуре 60°C, после чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,16 мм. Для отделения осадка проводят центрифугирование. Полученные осадки высушивают при температуре 80°C в сушильном шкафу и прокаливают при температуре 800°C в течение 2 ч.

На фиг. 1 представлены рентгеновские спектры продуктов, обожженных при температуре 800°C. Во всех случаях пики на рентгенограммах <4,85>, <2,99>, <2,92>, <2,59>, <2,50>, <2,42>, <2,17>, <2,06>, <1,93>, <1,74>, <1,69>, <1,59>, <1,49>, <1,45> характерны для феррита меди. Пиков, характерных для других соединений, не наблюдается, что означает, что получены однофазные продукты.

На фиг. 2 представлены микрофотографии полученного феррита меди.

На фиг. 3 представлен спектр магнитно-кругового дихроизма образца феррита меди.

На фиг. 4 представлена зависимость намагниченности образца феррита меди от величины приложенного магнитного поля.

Пример 1. Получение наночастиц феррита меди из нитратных растворов меди(II) и железа(III) с использованием раствора декстрана-40 в качестве стабилизатора и анионита АВ-17-8 в OH-форме в качестве реагента-осадителя, при температуре обжига 800°C.

Навески солей (1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3) растворяли в 50 мл 10%-го раствора полисахарида декстран-40. К полученному раствору, добавляли порциями 32,0 г (8,0 г анионита через каждые 15 мин) набухшего в воде анионита АВ-17-8 при перемешивании на шейкере со скоростью 120 мин-1 и температуре 60°С в течение 1 ч.

Для разделения фаз пропускали смесь через сито с диаметром отверстий 0,16 мм (отделение анионита) и проводи центрифугирование (отделение прекурсоров). Прекурсоры высушивали при 80°C и подвергали отжигу при температуре 800°С в течение 2 часов.

Выход продукта составляет 96%. По данным РФ А (фиг. 1а), осадок представляет собой монофазу феррита меди(II).

По результатам просвечивающей электронной микроскопии (фиг. 2а), частицы продукта имеют размеры порядка 20-50 нм.

На фиг. 3 представлен спектр магнитно-кругового дихроизма образца. Наблюдаемые спектральные особенности и характер кривой согласуются с литературными данными для феррита меди. Полученные результаты подтверждают наличие в продукте ферримагнитно-упорядоченной фазы.

Пример 2. Получение порошка феррита меди из нитратных растворов меди(II) и железа(III) с использованием раствора декстрана-70 в качестве стабилизатора и анионита АВ-17-8 в OH-форме в качестве реагента-осадителя, при температуре обжига 800°С.

Навески солей (1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3) растворяли в 50 мл 6%-го раствора Полисахарида дектран-70. К полученному раствору, добавляли порциями 32,0 г (8,0 г анионита через каждые 15 мин) набухшего в воде анионита АВ-17-8 при перемешивании на шейкере со скоростью 120 мин-1 и температуре 60°С в течение 1 ч.

Для разделения фаз пропускали смесь через сито с диаметром отверстий 0,16 мм (отделение анионита) и проводи центрифугирование (отделение прекурсоров). Прекурсоры высушивали при 80°C и подвергали отжигу при температуре 800°C в течение 2 часов.

Выход продукта составляет 91%. По данным РФА (фиг. 1б), осадок представляет собой монофазу феррита меди(II).

По результатам просвечивающей электронной микроскопии (фиг. 2б), частицы продукта имеют размеры порядка 20-50 нм.

На фиг. 4 представлена зависимость намагниченности образца от величины приложенного магнитного поля, измеренная при Т=4,2 К. Характер кривой соответствует литературным данным для феррита меди(II) и подтверждает наличие в продукте ферримагнитно-упорядоченной фазы.

Пример 3. Получение порошка феррита меди из нитратных растворов меди(II) и железа(III) с использованием раствора декстрана-40 в качестве стабилизатора и анионита А-400 в OH-форме в качестве реагента-осадителя, при температуре обжига 800°С.

Навески солей (1,2 г Cu(NO3)2 и 3,4 г Fe(NO3)3) растворяли в 50 мл 6%-го раствора полисахарида дектран-70. К полученному раствору, добавляли порциями 32,0 г (8,0 г анионита через каждые 15 мин) набухшего в воде анионита А-400 при перемешивании на шейкере со скоростью 120 мин-1 и температуре 60°С в течение 1 ч.

Для разделения фаз пропускали смесь через сито с диаметром отверстий 0,16 мм (отделение анионита) и проводили центрифугирование (отделение прекурсоров). Прекурсоры высушивали при 80°C и подвергали отжигу при температуре 800°C в течение 2 часов.

Выход продукта составляет 95%. По данным РФА (фиг. 1в), осадок представляет собой монофазу феррита меди(II).

По результатам просвечивающей электронной микроскопии (фиг. 2в), частицы продукта имеют размер 20-50 нм.

Магнитные характеристики продукта полностью идентичны магнитным характеристикам образцов, полученных по методикам, описанным в примерах 1 и 2.

Таким образом, разработан ионообменный способ получения наноразмерных порошков феррита меди(II). Благодаря данному способу удалось улучшить характеристики порошков ферритов за счет получения однофазного мелкодисперсного наноразмерного продукта.

Способ получения наноразмерного порошка феррита меди(II), включающий приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг, отличающийся тем, что реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в стехиометрическом молярном соотношении (1:2), в 10% растворе декстрана 40 или 6% растворе декстрана 70, получение осадка в виде порошка ведут путем перемешивания полученного реакционного раствора с сильноосновным гелевым анионитом АВ-17-8 или А-400 в гидроксильной форме при температуре 60°С в течение 1 ч, причем обжиг производят при температуре 800°С в течение 2 ч.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ФЕРРИТА МЕДИ (II)
Источник поступления информации: Роспатент

Показаны записи 1-10 из 60.
25.08.2017
№217.015.ccfa

Широкополосная щелевая полосковая антенна гнсс

Изобретение относится к антенной технике. Особенностью заявленной широкополосной щелевой полосковой антенны ГНСС является то, что микрополосковая линия включает в себя две дуги, выполненные с разными радиусами относительно геометрического центра подложки, каждая дуга проходит под всеми щелевыми...
Тип: Изобретение
Номер охранного документа: 0002619846
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.dca7

Способ извлечения скандия из хлоридных растворов

Изобретение относится к гидрометаллургии редких металлов. Извлечение скандия из хлоридных растворов сорбцией проводят на твердом экстрагенте (ТВЭКС) на основе гранул полимера, пропитанного фосфорорганическим экстрагентом. В качестве ТВЭКС используют гранулы сшитого полистирола, пропитанного...
Тип: Изобретение
Номер охранного документа: 0002624314
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e8a7

Средство с антитромботической активностью

Изобретение относится к области химико-фармацевтической промышленности, а именно к антитромботическому средству, которое может быть эффективным для профилактики и лечения тромботических состояний. Антитромботическое средство на основе сульфатированного целлюлозного материала представляет собой...
Тип: Изобретение
Номер охранного документа: 0002627435
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f6b5

Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека

Изобретение относится к области медицины. Предложен способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека, включающий инкубацию образца ткани рака легкого человека с дрожжевой РНК и инкубацию с растворами аптамеров, меченых различными...
Тип: Изобретение
Номер охранного документа: 0002639238
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fc7d

Способ получения дисукцината бетулинола

Изобретение относится к способу получения дисукцината бетулинола формулы: ацилированием бетулинола, в котором в качестве ацилирующего агента используют янтарную кислоту, при этом ацилирование проводят сплавлением бетулинола с янтарной кислотой при температуре 185-190°C в течение 20-25 минут...
Тип: Изобретение
Номер охранного документа: 0002638160
Дата охранного документа: 12.12.2017
19.01.2018
№218.016.0080

Способ получения органоминеральных удобрений на основе коры березы

Изобретение относится к сельскому хозяйству и может быть использовано для получения органоминеральных удобрений на основе коры березы. Способ включает получение пористой подложки из коры березы с последующей ее пропиткой раствором калийной соли до содержания 5,0-9,0 масс. % калия. Далее...
Тип: Изобретение
Номер охранного документа: 0002629264
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.015e

Способ получения дигидрокверцетина из древесины лиственницы сибирской

Изобретение относится к химико-фармацевтической промышленности и касается способа получения дигидрокверцетина, который является биологически активным средством. Способ получения дигидрокверцетина заключается в том, что древесину лиственницы, предварительно измельченную до частиц размером 1-3...
Тип: Изобретение
Номер охранного документа: 0002629770
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.07a2

Способ получения аргинин производного сульфата арабиногалактана

Изобретение относится к химико-фармацевтической промышленности. Способ получения аргинин производного сульфатированного арабиногалактана включает взаимодействие кислой формы сульфата арабиногалактана в растворе бутанола с аргинином, растворенным в 70%-ном этаноле, при рН 8 реакционного...
Тип: Изобретение
Номер охранного документа: 0002631470
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.07ab

Способ извлечения серебра из хлоридных растворов

Изобретение относится к гидрометаллургии серебра и может быть использовано при извлечении из хлоридных растворов при переработке растворов выщелачивания сульфидных цинковых и медных руд, концентратов, а также других промпродуктов цветной металлургии. Серебро извлекают из хлоридных растворов...
Тип: Изобретение
Номер охранного документа: 0002631440
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.0822

Способ получения ванилина окислением лигнинсодержащего древесного сырья

Настоящее изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической промышленности. Способ заключается в окислении лигнинсодержащего древесного сырья кислородом в щелочной среде при повышенной температуре и давлении в...
Тип: Изобретение
Номер охранного документа: 0002631508
Дата охранного документа: 25.09.2017
Показаны записи 1-7 из 7.
20.05.2013
№216.012.40bd

Способ получения алюмоникелевого пигмента

Изобретение может быть использовано в производстве термостойких пигментов для декорирования различных изделий из фарфора, фаянса, стекла, пластмасс. Способ получения алюмоникелевого пигмента включает приготовление исходных реакционных водных растворов, содержащих соль алюминия (III) и соль...
Тип: Изобретение
Номер охранного документа: 0002482143
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4755

Способ получения наноразмерного порошка кобальта

Изобретение относится к порошковой металлургии. Предложен способ получения наноразмерного порошка кобальта, включающий термическое разложение кобальтсодержащего прекурсора в углеводородном масле, получение осадка, его отделение и промывку гексаном. В качестве кобальтсодержащего прекурсора...
Тип: Изобретение
Номер охранного документа: 0002483841
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.480d

Способ получения синего алюмокобальтового пигмента

Изобретение относится к способу получения кобальтового пигмента и может быть использовано для производства лакокрасочных материалов, различного вида керамики, а также для проведения художественных и реставрационных работ. Техническим результатом изобретения является разработка ионообменного...
Тип: Изобретение
Номер охранного документа: 0002484025
Дата охранного документа: 10.06.2013
20.03.2014
№216.012.ab86

Способ получения наноразмерного порошка железоиттриевого граната

Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III). Сначала реагент-осадитель, в качестве...
Тип: Изобретение
Номер охранного документа: 0002509625
Дата охранного документа: 20.03.2014
27.02.2016
№216.014.bfe7

Способ получения наноразмерного порошка алюмоиттриевого граната

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве...
Тип: Изобретение
Номер охранного документа: 0002576271
Дата охранного документа: 27.02.2016
10.06.2016
№216.015.4878

Способ получения высокодисперсных порошков оксида индия

Изобретение относится к способу получения высокодисперсных порошков оксида индия InО, которые могут быть использованы в качестве полупроводников и газовых сенсоров. Способ получения субмикронного порошка оксида индия включает приготовление исходного водного раствора сульфата индия, который...
Тип: Изобретение
Номер охранного документа: 0002587083
Дата охранного документа: 10.06.2016
10.05.2018
№218.016.42c1

Способ получения субмикронных порошков феррита кобальта (ii)

Изобретение может быть использовано в электронике, в производстве телекоммуникационного оборудования и электродвигателей. Способ получения субмикронных порошков феррита кобальта(II) включает приготовление исходных реакционных водных растворов, содержащих соли кобальта и железа. В качестве солей...
Тип: Изобретение
Номер охранного документа: 0002649443
Дата охранного документа: 03.04.2018
+ добавить свой РИД