×
08.09.2019
219.017.c93a

Результат интеллектуальной деятельности: Способ получения натрийсодержащего титаносиликатного сорбента

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии титаносиликатных сорбентов для очистки жидких стоков от радионуклидов и токсичных неорганических веществ. В титансодержащий раствор с концентрацией 45-70 г/л TO вводят кремненатриевый реагент и гидроксид натрия с получением суспензии. Суспензию выдерживают в герметичных условиях при повышенной температуре с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией. Затем проводят водную обработку полупродукта при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, с получением пульпы. Пульпу перемешивают в течение 0,5-1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20-50 мас. %. Осадок гранулируют путем экструдирования и подвергают сушке. Способ обеспечивает получение монофазного гранулированного натрийсодержащего титаносиликатного сорбента, который обладает более развитой поверхностью и более высокой сорбционной емкостью. 2 з.п. ф-лы, 5 пр.

Изобретение относится к технологии титаносиликатных продуктов, используемых в качестве сорбентов для очистки жидких стоков от радионуклидов и токсичных неорганических веществ.

Существующая технология получения натрийсодержащего титаносиликатного продукта, обладающего сорбционными свойствами, не обеспечивает регулирование его вещественного состава и поверхностных свойств и не позволяет синтезировать продукт в гранулированной форме с повышенной сорбционной активностью по отношению к двухзарядным катионам, в том числе стронция, кобальта, никеля и меди. Получение такого продукта в значительной степени зависит от фазового состава, структурных особенностей, дисперсности частиц натрийсодержащего титаносиликатного полупродукта и пористости формируемых из него химически устойчивых гранул для длительного и эффективного использования в сорбционных колоннах, работающих в динамическом режиме. На решение этой проблемы направлено настоящее изобретение.

Известен способ получения натрийсодержащего титаносиликатного сорбента (см. пат. 2467953 РФ, МПК C01G 23/00, С22В 3/08 (2006.01), 2012), согласно которому в титансодержащий сернокислый раствор, образовавшийся при переработке титансодержащего концентрата, вводят сульфат аммония до обеспечения концентрации его в растворе 300-450 г/л с кристаллизацией аммоний-титансодержащей твердой фазы. Твердую фазу растворяют в воде с получением сернокислого раствора с рН 1-2, в который вводят кремненатриевый реагент в виде кристаллического силиката натрия или натриевого жидкого стекла и добавляют гидроксид натрия до обеспечения в полученной суспензии мольного соотношения TiO2:SiO2:Na2O=1:(0,75-5,5):(0,5-5). Затем суспензию выдерживают в герметичных условиях при температуре 150-250°С в течение 20-40 часов с образованием титаносиликатного натрийсодержащего осадка, который отделяют фильтрованием, промывают водой от маточного раствора и сушат при 70-150°С. Получают композиционнный титаносиликатный натрийсодержащий продукт кристаллической структуры. Полная сорбционная емкость продукта, мг-экв/г: по цезию - 2,2-3,8, стронцию - 1,4-2,0, кобальту - 1,1-1,8.

Данный способ обеспечивает получение полифазного порошкообразного сорбента, который характеризуется невысокой сорбционной емкостью, особенно по отношению к двухзарядным катионам стронция и кобальта. Способ является многооперационным и не обеспечивает получение гранул, что ограничивает его использование в сорбционных колоннах, работающих в динамическом режиме.

Известен способ получения натрийсодержащего титаносиликатного сорбента (см. пат. 9675957 США, МПК B01J 20/10, C01G 23/00, С01В 33/20 (2006.01), 2017), согласно которому смешивают источник кремниевой кислоты, соединение натрия, тетрахлорид титана и воду с получением геля, в котором мольное отношение Ti:Si составляет 0,5-3,0. Затем гель подвергают гидротермальной обработке с получением обводненной смеси кристаллического натрийсодержащего титаносиликата и титаната натрия при их различном соотношении, которую либо сразу сушат и измельчают, либо добавляют в нее связующее и экструдируют с образованием стержнеобразной формованной массы, которую высушивают и измельчают. В результате получают продукт в порошкообразной или гранулированной форме. По данным рентгеновской дифрактометрии состав полученных титаносиликата и титаната соответствует химическим формулам Na4Ti4Si3O16⋅nH2O, где n равно 0-8, и Na4Ti9O20⋅mH2O, где m равно 0-10. Для проведения сорбции гранулированным продуктом использовали модельные растворы цезия и стронция с концентрацией 50 ppm Cs и 50 ppm Sr при степени очистки растворов 20,4-29,2% по Cs и 83,9-84,8% по Sr, что соответствует показателям полной сорбционной емкости гранулированного продукта, мг-экв/г: 0,015-0,021 по Cs и 0,186-0,189 по Sr.

Данный способ направлен на получение полифазного порошкообразного или гранулированного сорбента, состоящего из двух фаз различной структуры, что снижает его сорбционные свойства. Получение гранулированного продукта требует использования связующего для обработки обводненной смеси кристаллических натрийсодержащего титаносиликата и титаната натрия, что усложняет способ. Сорбционная емкость гранулированного сорбента по отношению к катионам цезия и стронция относительно невысока.

Известен также принятый в качестве прототипа способ получения натрийсодержащего титаносиликатного сорбента (см. пат. 2568699 РФ, МПК B01J 20/02, С01В 33/20 (2006.01), 2015), согласно которому в исходном титансодержащем растворе восстановливают 20-40% титана (IV) до титана (III) путем электрохимической обработки постоянным током при плотности тока 0,02-0,1 А/см2. В качестве титансодержащего раствора используют сульфатный, сульфатноаммонийный или оксихлоридный раствор с концентрацией 50-100 г/л TiO2. Затем в титансодержащий раствор вводят кремненатриевый реагент в виде растворов силиката натрия или натриевого жидкого стекла до обеспечения мольного соотношения TiO2:SiO2=1:3,0-4,5 и добавляют раствор гидроксида натрия до рН 11,5-12,5. Образовавшуюся суспензию выдерживают на воздухе в течение 2-10 часов. Затем суспензию выдерживают в герметичных условиях при температуре 200-220°С в течение 100-120 часов с образованием натрийсодержащего титаносиликатного полупродукта, который промывают водой от маточного раствора и подвергают сушке при 80-150°C с получением натрийсодержащего титаносиликата. Изобретение обеспечивает полную сорбционную емкость по катионам, мг-экв/г: цезия 3,15-3,75, стронция - 3,35-4,58, кобальта - 2,66-3,15.

Известный способ обеспечивает получение монофазного порошкообразного продукта, который при относительно высокой сорбционной емкости по цезию обладает пониженной емкостью по отношению к двухзарядным катионам стронция и кобальта. Способ не обеспечивает получение гранул сорбента, что ограничивает его использование в сорбционных колоннах, работающих в динамическом режиме.

Настоящее изобретение направлено на достижение технического результата, заключающегося в получении монофазного гранулированного натрийсодержащего титаносиликатного сорбента без использования связующего и обладающего достаточно высокой сорбционной емкостью, в том числе по отношению к двухзарядным катионам. Все это позволяет эффективно использовать сорбент в сорбционных колоннах, работающих в динамическом режиме.

Технический результат достигается тем, что в способе получения натрийсодержащего титаносиликатного сорбента, включающем введение в титансодержащий раствор кремненатриевого реагента и гидроксида натрия с получением суспензии, выдержку суспензии в герметичных условиях при повышенной температуре с образованием натрийсодержащего титаносиликатного полупродукта, его отделение фильтрацией, водную обработку, сушку, согласно изобретению, используют титансодержащий раствор с концентрацией 45-70 г/л TiO2, водную обработку натрийсодержащего титаносиликатного полупродукта ведут при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, с получением пульпы, которую перемешивают в течение 0,5-1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20-50 мас. %, после чего осадок гранулируют, а гранулы подвергают сушке.

Достижению технического результата способствует также то, что гранулирование натрийсодержащего титаносиликатного осадка ведут экструдированием при давлении 2-6 кг/м2.

Достижению технического результата способствует также и то, что сушку гранул ведут при температуре 65-75°С.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Использование титансодержащего раствора с концентрацией 45-70 г/л TiO2 способствует формированию мелкокристаллического монофазного натрийсодержащего титаносиликатного полупродукта, что обеспечивает получение пористых гранул устойчивых к продолжительному гидродинамическому воздействию. При концентрации менее 45 г/л TiO2 пористость гранул снижается, и сорбционные свойства уменьшаются, а при концентрации более 70 г/л TiO2 устойчивость гранул к продолжительному гидродинамическому воздействию уменьшается и снижается срок их службы.

Проведение водной обработки полупродукта при массовом отношении твердой и жидкой фаз, равном 1:0,25-1,5, приводит к образованию пульпы, содержащей в осадке требуемое количество технологически необходимых компонентов, преимущественно соединений кремния, обеспечивающих получение устойчивых гранул с повышенными сорбционными свойствами, особенно по отношению к двухзарядным катионам, без использования связующего. При расходе водной фазы менее 0,25 в заявленном соотношении повышается плотность гранул и понижается их сорбционная активность. При расходе водной фазы более 1,5 снижается содержание технологически необходимых компонентов, при этом устойчивость гранул уменьшается, что ведет к их разрушению при продолжительном гидродинамическом воздействии.

Перемешивание пульпы в течение 0,5-1,5 часов обеспечивает эффективное диспергирование твердых частиц в жидкой фазе. Перемешивание пульпы в течение менее 0,5 часа не обеспечивает эффективного диспергирования твердых частиц, а перемешивание в течение более 1,5 часов является технологически неоправданным.

Фильтрация пульпы до показателя влажности натрийсодержащего титаносиликатного осадка 20-50 мас. % обеспечивает формирование устойчивых гранул с высокой пористостью и повышенными сорбционными свойствами, особенно по отношению к двухзарядным катионам. При влажности менее 20 мас. % устойчивость гранул к продолжительному гидродинамическому воздействию уменьшается, а при влажности более 50 мас. % получаются плотные гранулы с низкой пористостью и пониженными сорбционными свойствами.

Гранулирование осадка обеспечивает получение сорбента с повышенными сорбционными свойствами, особенно по отношению к двухзарядным катионам, эффективно используемого в сорбционных колоннах, работающих в динамическом режиме.

Сушка полученных гранул способствует удалению из них воды и формированию пористой системы, обеспечивающей повышение сорбционных свойств.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в получении монофазного гранулированного натрийсодержащего титаносиликатного сорбента без использования связующего и обладающего достаточно высокой сорбционной емкостью, в том числе по отношению к двухзарядным катионам, что позволяет эффективно использовать сорбент в сорбционных колоннах, работающих в динамическом режиме.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Проведение гранулирования натрийсодержащего титаносиликатного осадка путем экструдирования при давлении 2-6 кг/м2 обеспечивает получение гранул сорбента заданного размера с общим объемом пор в интервале значений 0,85-1,25 см3/г. Это позволяет эффективно использовать их в сорбционных колоннах, работающих в динамическом режиме.

Сушка гранул сорбента при температуре 65-75°С способствует образованию эффективной пористой системы продукта. Сушка при температуре менее 65°С значительно повышает ее продолжительность без заметного изменения пористости гранул сорбента, а при температуре более 75°С пористость гранул снижается за счет увеличения скорости удаления из них воды, вызывающей растрескивание гранул.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с получением монофазного сорбента в гранулированной форме с повышенными сорбционными свойствами.

Сущность и преимущества предлагаемого способа могут быть пояснены следующими примерами конкретного выполнения изобретения.

Пример 1. Берут 100 мл титансодержащего сульфатноаммонийного раствора с концентрацией 45 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:4,2, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 210°С в течение 4,5 суток с образованием кристаллического натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:0,25, с получением пульпы. Пульпу перемешивают в течение 1,5 часов и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 20 мас. %, после чего натрийсодержащий титаносиликатный осадок гранулируют путем экструдирования при давлении 6 кг/м2. Сформированные при этом гранулы сушат при температуре 65°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 0,85 см3/г, средний диаметр пор - 18,6 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,66, стронция - 5,22, кобальта - 3,29, никеля - 2,45, меди - 3,1.

Пример 2. Берут 100 мл титансодержащего сульфатного раствора с концентрацией 55 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=l:5, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 200°С в течение 4,5 суток с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:0,7, с получением пульпы. Пульпу перемешивают в течение 1 часа и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 35 мас. %, после чего его гранулируют путем экструдирования при давлении 4 кг/м2. Сформированные при этом гранулы сушат при температуре 70°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 1,25 см3/г, средний диаметр пор - 10,3 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,7, стронция - 5,57, кобальта - 3,72, никеля - 2,98, меди - 3,24.

Пример 3. Берут 100 мл титансодержащего оксихлоридного раствора с концентрацией 70 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:5,5, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 190°С в течение 5 суток с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:1,5, с получением пульпы. Пульпу перемешивают в течение 0,5 часа и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 50 мас. %, после чего его гранулируют путем экструдирования при давлении 2 кг/м2. Сформированные при этом гранулы сушат при температуре 75°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 0,99 см3/г, средний диаметр пор - 15,8 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,59, стронция - 5,1, кобальта - 3,45, никеля - 2,8, меди - 3,0.

Пример 4. Берут 100 мл титансодержащего сульфатного раствора с концентрацией 55 г/л TiO2. В раствор при перемешивании вводят кремненатриевый реагент в виде раствора натриевого жидкого стекла с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:5, после чего добавляют раствор гидроксида натрия до рН 12 с получением суспензии. Затем суспензию выдерживают в герметичных условиях при температуре 210°С в течение 4,5 суток с образованием натрийсодержащего титаносиликатного полупродукта, который отделяют фильтрацией и обрабатывают водой при массовом отношении твердой и жидкой фаз, равном 1:0,7, с получением пульпы. Пульпу перемешивают в течение 1 часа и фильтруют до обеспечения влажности натрийсодержащего титаносиликатного осадка 35 мас. %, после чего его гранулируют путем экструдирования при давлении 4 кг/м2. Сформированные при этом гранулы сушат при температуре 70°С. Полученный гранулированный сорбент кубической структуры соответствует формуле Na3H(TiO)4(SiO4)3⋅4H2O и имеет следующие характеристики: общий объем пор - 0,92 см3/г, средний диаметр пор - 10,6 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 1,6, стронция - 5,46, кобальта - 3,25, никеля - 2,4, меди - 3,12.

Пример 5 (по прототипу). Берут 100 мл титансодержащего сульфатно-аммонийного раствора с концентрацией 50 г/л TiO2. Осуществляют восстановление 20% титана (IV) до титана (III) путем электрохимической обработки раствора постоянным током плотностью 0,02 А/см2 в течение 65 минут. Затем в раствор вводят кремненатриевый реагент в виде раствора силиката натрия с концентрацией SiO2 - 125 г/л до обеспечения мольного соотношения TiO2:SiO2=1:3,5. После этого добавляют раствор гидроксида натрия до рН 12 с получением суспензии, которую выдерживают на воздухе в течение 10 часов. Затем суспензию выдерживают в герметичных условиях при температуре 200°С в течение 120 часов с образованием натрийсодержащего титаносиликатного полупродукта. Полученный полупродукт промывают на фильтре водой при массовом отношении твердой и жидкой фаз, равном 1:20, до практически полного удаления соединений кремния, содержащихся в маточном растворе, и подвергают сушке при 100°С. Полученный порошкообразный сорбент кристаллической структуры соответствует формуле Na3Ti4Si2O13(OH)⋅4H2O. Общий объем пор сорбента - 0,71 см3/г, диаметр пор - 9,2 нм. Полная сорбционная емкость составляет по катионам, мг-экв/г: цезия - 3,75, стронция - 4,58, кобальта - 3,06, никеля - 1,82, меди - 2,0.

Из вышеприведенных Примеров видно, что предлагаемый способ по сравнению с прототипом позволяет получить монофазный гранулированный натрийсодержащий титаносиликатный сорбент, который обладает более развитой поверхностью. Общий объем пор выше в 1,2-1,8 раза и соответственно выше сорбционная емкость продукта по отношению к двухзарядным катионам, мг-экв/г: стронция - 5,1-5,57, кобальта - 3,25-3,72, никеля - 2,4-2,98, меди - 3,0-3,24. Способ согласно изобретению может быть реализован с использованием стандартного оборудования.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 34.
10.05.2018
№218.016.3bae

Способ получения фосфата титана

Изобретение может быть использовано при получении сорбента для очистки водно-солевых промышленных стоков от радионуклидов и токсичных катионов металлов. Для получения фосфата титана смешивают твердый титанилсульфат аммония с фосфорной кислотой. Полученную смесь выдерживают с формированием и...
Тип: Изобретение
Номер охранного документа: 0002647304
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.414c

Способ получения порошка вентильного металла

Изобретение относится к получению порошка вентильного металла. Способ включает восстановление порошка оксидного соединения вентильного металла парами магния или кальция при нагреве в инертной атмосфере, термообработку продуктов восстановления при температуре 1000-1500°С в течение 0,5-2 часов,...
Тип: Изобретение
Номер охранного документа: 0002649099
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.431e

Способ переработки эвдиалитового концентрата

Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния. Способ включает разложение концентрата серной кислотой, отделение остатка от цирконийсодержащего раствора, его...
Тип: Изобретение
Номер охранного документа: 0002649606
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4e68

Способ переработки фторсодержащего апатитового концентрата

Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии...
Тип: Изобретение
Номер охранного документа: 0002650923
Дата охранного документа: 18.04.2018
18.05.2018
№218.016.508e

Способ переработки жидких отходов аэс с борным регулированием

Изобретение относится к комплексной переработке сложных по составу жидких борсодержащих отходов АЭС. Способ переработки жидких отходов АЭС с борным регулированием, содержащих соли натрия и калия, включает введение нитрата кальция в боратный раствор с осаждением бората кальция и его отделением...
Тип: Изобретение
Номер охранного документа: 0002652978
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.57e2

Способ извлечения палладия из кислого медьсодержащего раствора

Изобретение относится к извлечению палладия из кислых медьсодержащих растворов. Проводят обработку исходного раствора экстрагентом оксимного типа в виде 20-40 об. % раствора экстракционного реагента на основе кетоксима, альдоксима или их смеси в разбавителе при рН 0,2-2,5 и отношении O:В=1-5:1....
Тип: Изобретение
Номер охранного документа: 0002654818
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a59

Способ получения порошка сплава молибдена и вольфрама

Изобретение относится к получению порошка сплава молибдена и вольфрама. Способ включает металлотермическое восстановление их кислородных соединений с образованием реакционной массы, содержащей порошок сплава молибдена и вольфрама, выделение порошка сплава из реакционной массы и водную промывку...
Тип: Изобретение
Номер охранного документа: 0002655560
Дата охранного документа: 28.05.2018
11.06.2018
№218.016.60c0

Способ получения агломерированного танталового порошка

Изобретение относится к получению агломерированного конденсаторного танталового порошка, который может быть использован в производстве различных типов танталовых конденсаторов. Проводят нагрев металлического тантала, его гидрирование в атмосфере водорода в процессе охлаждения со средней...
Тип: Изобретение
Номер охранного документа: 0002657257
Дата охранного документа: 09.06.2018
05.09.2018
№218.016.831b

Способ переработки сфенового концентрата

Изобретение может быть использовано в производстве сорбентов для очистки жидких стоков от тяжелых металлов и радионуклидов, наполнителя для лакокрасочных и строительных материалов. Способ переработки сфенового концентрата включает его измельчение и разложение разбавленной серной кислотой при...
Тип: Изобретение
Номер охранного документа: 0002665759
Дата охранного документа: 04.09.2018
11.10.2018
№218.016.907d

Способ обработки фосфатного концентрата редкоземельных элементов

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку...
Тип: Изобретение
Номер охранного документа: 0002669031
Дата охранного документа: 05.10.2018
Показаны записи 1-10 из 20.
10.06.2013
№216.012.4883

Способ получения титанового дубителя

Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана. Берут гидроксид титана, содержащий 30-80% TiO, смешивают его с сульфатом аммония при массовом отношении 1:0,05-0,2 в...
Тип: Изобретение
Номер охранного документа: 0002484143
Дата охранного документа: 10.06.2013
27.12.2013
№216.012.90fa

Способ выработки кож

Изобретение относится к кожевенной промышленности и может быть использовано при выработке кож для верха обуви, мебели и салонов автомобилей с применением наноразмерных минеральных дубителей и пигментов. Способ включает пикелевание голья, дубление титаноалюминиевым дубителем с размером частиц не...
Тип: Изобретение
Номер охранного документа: 0002502807
Дата охранного документа: 27.12.2013
20.03.2014
№216.012.ac3f

Способ получения минерального дубителя

Изобретение относится к химической технологии получения титансодержащих продуктов, используемых в качестве минеральных дубителей при выработке кож и меха. Производят смешение сульфатной титанилсодержащей и алюмосодержащей солей и сульфата аммония. В качестве сульфатной титанилсодержащей соли...
Тип: Изобретение
Номер охранного документа: 0002509810
Дата охранного документа: 20.03.2014
20.01.2015
№216.013.1eb6

Способ получения титанокремниевой натрийсодержащей композиции

Изобретение относится к способу получения титанокремниевой натрийсодержащей композиции, включающему смешение титансодержащего и кремнийсодержащего компонентов, добавление раствора гидроксида натрия с получением суспензии, выдержку суспензии в герметичных условиях при повышенной температуре с...
Тип: Изобретение
Номер охранного документа: 0002539303
Дата охранного документа: 20.01.2015
20.08.2015
№216.013.70a5

Способ иммобилизации радионуклидов из жидких радиоактивных отходов

Изобретение относится к атомной энергетике, а именно к обезвреживанию жидких радиоактивных отходов, и может быть реализовано при утилизации радиоактивных отходов методом отверждения в стабильные твердые матрицы. Способ иммобилизации радионуклидов из жидких радиоактивных отходов заключается в...
Тип: Изобретение
Номер охранного документа: 0002560407
Дата охранного документа: 20.08.2015
10.11.2015
№216.013.8b7b

Способ получения кристаллического титаносиликата

Изобретение может быть использовано при получении сорбентов для очистки воды от токсичных неорганических веществ. Исходный каркасный титаносиликат Na(Na,H)TiO[SiO]·2HO обрабатывают 0,01-0,4 М раствором соляной кислоты в течение 0,5-2 часов с получением кристаллического слоистого титаносиликата...
Тип: Изобретение
Номер охранного документа: 0002567314
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.90db

Способ получения натрийсодержащего титаносиликата

Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов и фотокатализаторов. Берут кислый титансодержащий раствор и осуществляют восстановление 20-40% титана (IV) до титана (III) путем электрохимической обработки. Затем в титансодержащий раствор вводят...
Тип: Изобретение
Номер охранного документа: 0002568699
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9d52

Способ переработки титансодержащего материала

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора...
Тип: Изобретение
Номер охранного документа: 0002571904
Дата охранного документа: 27.12.2015
27.08.2016
№216.015.4eff

Способ получения фосфата титана

Изобретение может быть использовано в производстве сорбента катионов из водно-солевых растворов. Для получения фосфата титана берут титанилсульфат аммония в твердом виде и вводят его в 10-50% раствор фосфорной кислоты, взятой из расчета обеспечения массового отношения TiO:PO=1:(1,75-2,5)....
Тип: Изобретение
Номер охранного документа: 0002595657
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.7956

Способ переработки ниобийсодержащего фторидного раствора с примесью сурьмы

Изобретение относится к экстракционной технологии извлечения и разделения ниобия и сурьмы и может найти применение при получении высокочистых соединений ниобия. В ниобийсодержащий фторидный раствор с примесью сурьмы вводят фторид аммония до обеспечения суммарной концентрации HF и NHF, равной...
Тип: Изобретение
Номер охранного документа: 0002599463
Дата охранного документа: 10.10.2016
+ добавить свой РИД