×
05.09.2019
219.017.c780

Результат интеллектуальной деятельности: Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биотехнологии, а именно к обратимому ингибированию в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. Способ включает введение дисперсии липидных наночастиц, в качестве которых используют наночастицы модифицированных кристаллов магнетита, содержащих связанную с ними малую интерферирующую рибонуклеиновую кислоту, комплементарную к матричной рибонуклеиновой кислоте, кодирующей последовательность аполипопротеина B в опухолевой клетке, в среду с опухолевыми клетками Huh7 гепатоцеллюлярной карциномы человека. Затем полученную смесь обрабатывают в течение 1-3 ч переменным магнитным полем с индуктивностью 50-100 миллитесла. Изобретение позволяет повысить степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. 4 пр.

Изобретение относится к области биотехнологии и касается способа обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы человека экспрессии гена, кодирующего синтез аполипопротеина В (апоВ). Обратимое ингибирование экспрессии гена, кодирующего синтез апоВ, и находящегося не только в опухолевых клетках гепатоцеллюлярной карциномы, но и в гепатоцитах печени, необходимо для контроля над биохимическими процессами в живых организмах. Данное изобретение может быть использовано для снижения уровня липопротеинов низкой плотности, одним из которых является апоВ, и их метаболитов в сыворотке крови, повышенный уровень которых приводит к возникновению атеросклеротических бляшек и связан с риском развития сердечно-сосудистых заболеваний.

Известен способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, путем введения дисперсии липидных наночастиц, содержащих связанную с ними малую интерферирующую рибонуклеиновую кислоту (миРНК), комплементарную к матричной рибонуклеиновой кислоте (мРНК), кодирующей синтез апоВ в опухолевой клетке, а также доставки миРНК с использованием липида на основе полиэтиленгликоля-2000 (Hattori Y, Machida Y, Honda M, Takeuchi N, Ohno H, Onishi H. Small interfering RNA delivery into the liver by cationic cholesterol derivative-based liposomes Journal of Liposome Research 2016; 2104. doi: 10.1080/08982104.2016.1205599).

Данный способ имеет такие признаки, совпадающие с существенными признаками предложенного технического решения, как введение дисперсии липидных наночастиц, содержащей связанную с ними миРНК, комплементарную к мРНК, кодирующей апоВ, в биологический объект.

Известен способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, путем введения в биологический объект дисперсии липидных наночастиц, содержащих связанную с ними миРНК, комплементарную к мРНК, кодирующей синтез апоВ в опухолевой клетке (Hattori Y, Takeuchi N, Nakamura M, Yoshiike Y, Taguchi M, Ohno H, et al. Effect of cationic lipid type in cationic liposomes for siRNA delivery into the liver by sequential injection of chondroitin sulfate and cationic lipoplex. J Drug Deliv Sci Technol 2018; 48: 235-44. doi: 10.1016/j.jddst.2018.09.022).

Данный способ имеет такие признаки, совпадающие с существенными признаками предложенного технического решения, как введение дисперсии липидных наночастиц, содержащей связанную с ними миРНК, комплементарную к мРНК, кодирующую в том числе и синтез апоВ, в биологический объект, в том числе и в опухолевые клетки.

Наиболее близким к заявляемому является известный способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, путем введения дисперсии липидных наночастиц, содержащих связанную с ними миРНК, комплементарную к мРНК, кодирующей синтез апоВ в опухолевой клетке, в среду с опухолевыми клетками (Tadin-strapps М, Peterson LB, Cumiskey A, Rosa RL, Mendoza VH, Castro-perez J, et al. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids Journal of Lipid Research, 2011; 52. doi: 10.1194/jlr.M012872 - прототип). В данном способе в качестве опухолевых клеток гепатоцеллюлярной карциномы используют опухолевые клетки Нера1-6 мыши, которые культивируют в среде DMEM (Corning, №10-013-CV), содержащей 4,5 г/л глюкозы, 10% эмбриональной бычьей сыворотки, 1,5 г/л бикарбоната натрия, 4 мМ L-глутамина, 100 мкг/мл стрептомицина и 100 ед./мл пенициллина. В качестве дисперсии липидных наночастиц используют липосомы, содержащие связанную с ними миРНК, комплементарную к мРНК, кодирующую синтез апоВ.

Данный способ содержит такие признаки, совпадающие с существенными признаками предложенного технического решения, как введение дисперсии липидных наночастиц, содержащих связанную с ними миРНК, комплементарную к мРНК, кодирующей синтез апоВ в опухолевой клетке, в среду с опухолевыми клетками

Недостатком известного способа является то, что он не позволяет добиться высокого уровня обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, для клеточной линии гепатоцеллюлярной карциномы человека Huh7 (см. контрольный пример 4) путем удаленного внешнего воздействия магнитным полем на биологическую систему.

Техническая проблема изобретения заключается в разработке способа обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, лишенного вышеуказанного недостатка.

Технический результат изобретения состоит в повышении степени обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ.

Технический результат достигается следующим образом, когда в способе обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В, включающем введение дисперсии липидных наночастиц, содержащих связанную с ними малую интерферирующую рибонуклеиновую кислоту, комплементарную к матричной рибонуклеиновой кислоте, кодирующей последовательность аполипопротеина B в опухолевой клетке, в среду с опухолевыми клетками, в качестве липидных наночастиц используют наночастицы модифицированных кристаллов магнетита, полученные смешением 138 мас. ч. кристаллов магнетита с размером 23-27 нм с 1 мас. ч. смеси липидов холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем с 60000-120000 мас. ч. воды, смесь обрабатывают ультразвуком в течение 20-60 мин с использованием помещенного в смесь ультразвукового щупа, смешение 1 мас. ч. полученной дисперсии модифицированных кристаллов магнетита выполняют с раствором малой интерферирующей рибонуклеиновой кислоты в водном растворе ацетата натрия, содержащем 0,05-0,20 мас. ч. малой интерферирующей рибонуклеиновой кислоты, очищают полученную дисперсию диализом против воды и добавляют в дисперсию натрий-фосфатный буфер до получения дисперсии с ионной силой 0,15 М, в качестве среды с опухолевыми клетками используют среду с опухолевыми клетками Huh7 гепатоцеллюлярной карциномы человека, причем после введения дисперсии липидных наночастиц в среду с опухолевыми клетками полученную смесь обрабатывают в течение 1-3 ч переменным магнитным полем с индуктивностью 50-100 миллитесла.

Следует отметить, что уровень обратимого ингибирования экспрессии гена, кодирующего синтез апоВ, в опухолевых клетках гепатоцеллюлярной карциномы зависит от типа клеточной линии. При этом наличие высокого уровня ингибирования для одной клеточной линии никоем образом не гарантирует высокого уровня ингибирования для другой линии. Так, например, высокий уровень обратимого ингибирования для опухолевых клеток Нера1-6 мыши не гарантирует аналогичного эффекта для клеточных линий человека.

Предлагаемый способ является новым и не описан в патентной и научно-технической литературе.

В предложенном техническом решении липидные наночастицы обязательно должны содержать связанную с ними миРНК, комплементарную к мРНК, кодирующей синтез апоВ. При этом если в предлагаемом способе в качестве миРНК использовать миРНК с другой последовательностью нуклеотидов, то предлагаемый способ становится неработоспособным.

Если использованную в предлагаемом техническом решении линию опухолевых клеток гепатоцеллюлярной карциномы заменить на любую другую линию опухолевых клеток, где не экспрессируется ген, кодирующий синтез апоВ, то предложенный способ также становится неработоспособным.

В предлагаемом способе используют исходные наночастицы кристаллов магнетита с размером 23-27 нм. Метод получения частиц магнетита с указанными размерами раннее описан в нашем патенте RU №2668440, МПК С30В 29/16 (2006.01), 2017. Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы имеют кубическую форму с размером (со стороной) 23-27±1 нм. С помощью дифрактометра Rigaku Smartlab было выявлено, что положение рентгеновских рефлексов полученных кристаллов соответствует справочным значениям рефлексов магнетита.

Получение наночастиц магнетита, покрытых указанной в предложенном техническом решении смесью липидов, в патентной и научно-технической литературе не описано.

Используемые в предложенном техническом решении оптимальный размер наночастиц исходного магнетита 23-27 нм, а также оптимальный качественный и количественный состав модифицирующей магнетит смеси липидов и оптимальные массовые соотношения исходных кристаллов магнетита, смеси липидов, хлороформа, воды, в том числе оптимальное соотношение между содержанием магнетита в дисперсии и концентрацией миРНК в водном растворе ацетата натрия, а также оптимальная продолжительность обработки смеси ультразвуком и обработки смеси опухолевых клеток гепатоцеллюлярной карциномы Huh7 с дисперсией модифицированных частиц, содержащих миРНК, магнитным полем, а также оптимальная индуктивность магнитного поля были установлены экспериментально.

При осуществлении данного способа смешения дисперсии модифицированных кристаллов магнетита с раствором миРНК в водном растворе ацетата натрия, водный раствор ацетата натрия должен содержать не менее 0,05 мас. ч. миРНК, поскольку при меньшем ее содержании происходит агрегация частиц магнетита. Верхний предел массового содержания миРНК в водном растворе ацетата натрия в принципе не лимитирован, однако, во избежание лишнего расхода миРНК целесообразно использовать интервал 0,05-0,20 мас. ч. миРНК. Следует отметить, что диализ дисперсии против воды можно проводить в течение различного времени, например, в течение 24-48 ч. При этом целесообразно использовать диализные мешки с размером пор не менее 25 кДа, поскольку при меньшем размере пор затруднена диффузия несвязанной миРНК через поры мембраны. Перед смешением очищенной дисперсии липидных наночастиц, содержащей миРНК, с опухолевыми клетками преимущественно следует проводить очистку дисперсии от контаминирующих ее микроорганизмов путем шприцевой фильтрации через фильтр с размером пор не более 0,45 мкм, поскольку при большем размере пор появляется возможность проникновения микроорганизмов через поры. Однако, необходимость вышеуказанной стадии дополнительной фильтрации дисперсии зависит от уровня стерильности в рабочем помещении и в стерильных условиях не является обязательной.

В процессе получения модифицированных кристаллов магнетита количество вводимой воды может варьироваться и составлять 100-200% от объема хлороформа. В данном техническом решении выбор в качестве растворителя хлороформа обусловлен тем, что он обладает относительно низкой температурой кипения и впоследствии может быть легко удален из реакционной смеси в процессе ее обработки ультразвуком, сопровождающимся нагревом смеси

В предложенном техническом решении используют не традиционную ультразвуковую баню, в которой ультразвук неизбежно рассеивается и значительная часть энергии ультразвуковых волн не попадает в реакционную систему, а помещенный в смесь ультразвуковой щуп, что позволяет существенно повысить эффективность воздействия ультразвука на реакционную смесь и, следовательно, уменьшить его мощность. При этом мощность ультразвукового щупа может варьироваться и составлять 20-100 ватт (Вт). Экспериментально определенная оптимальная продолжительность обработки смеси ультразвуком в этих условия составляет 20-60 мин, поскольку при меньшей продолжительности обработки в смеси может сохраниться остаточный хлороформ, а при продолжительности обработки более 60 мин возможен перегрев смеси, приводящий к нежелательной агрегации частиц. При этом следует отметить, что сравнивать мощности ультразвука при использовании традиционной ультразвуковой бани и помещенного в смесь ультразвукового щупа некорректно ввиду различия их воздействия на смесь.

В предлагаемом техническом решении смесь обрабатывают переменным магнитным полем, т.е. полем с переменным вектором намагниченности, при этом частота переменного магнитного поля может быть различна и составлять, например, 37-45 герц. Если вместо переменного магнитного поля использовать постоянное магнитное поле, то технический результат не достигается. Оптимальные значения индуктивности магнитного поля 50-100 миллитесла были установлены экспериментально.

Перед введением полученных дисперсий в среду с опухолевыми клетками проводят стандартные процедуры определения содержания железа в дисперсии с последующим его пересчетом на магнетит и определения содержания в ней миРНК.

Во всех примерах измерение концентрации железа осуществляют посредством феррозинового теста. При этом 20 мкл дисперсии смешивают с 80 мкл концентрированной соляной кислоты, после чего в раствор добавляют 900 мкл дистиллированной воды, из полученного раствора отбирают 100 мкл и разбавляют 900 мкл дистиллированной воды, после чего 400 мкл этого раствора смешивают с 200 мкл дистиллированной воды и 40 мкл заранее приготовленного феррозинового теста. Концентрацию определяют фотометрически по заранее приготовленной калибровочной кривой.

Во всех примерах измерение концентрации миРНК проводят методом спектрофлуориметрии (Spectramax М5) с использованием теста Quant-iT RiboGreen RNA. Кривые строят непосредственно перед измерением с учетом фона. Равные концентрации липидоподобных наночастиц в буфере инкубируют с флуоресцентным красителем RiboGreen и измеряют флуоресценцию. Эффективность инкапсулирования рассчитывают как отношение концентрации связанной миРНК к изначально добавляемой концентрации миРНК к частицам.

В предлагаемом способе степень обратимого ингибирования экспрессии вышеуказанного гена определяют с помощью полимеразной цепной реакции (ПЦР) с обратной транскрипцией путем последовательного выделения РНК согласно рекомендациям производителя Trizol реагента, оценки концентрации полученной РНК с использованием спектрофотометра NanoDrop™ One/OneC Microvolume UV-Vis. Комплементарную ДНК (кДНК) получают в реакции обратной транскрипции с помощью фермента обратной транскриптазы (набор для синтеза кДНК Maxima First Strand для RT-qPCR). Полученную кДНК используют для количественной ПЦР.

Следует отметить, что ингибирование экспрессии гена является обратимым из-за последующего восстановления экспрессии гена, вызванного процессом транскрипции мРНК (Summerton JE. Morpholino, siRNA, and S-DNA Compared: Impact of Structure and Mechanism of Action on Off-Target Effects and Sequence Specificity 2007: 651-60).

Экспериментально было показано, что в предлагаемом способе использование переменного магнитного поля с определенной продолжительностью и индуктивностью позволяет повысить степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ.

Преимущества предлагаемого способа иллюстрируют следующие примеры.

Пример 1.

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 20,0 мл октадецена, 1,800 г олеата железа(III), 0,570 г олеиновой кислоты и 1,220 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°С со скоростью 6°С/мин и выдерживают при этой температуре в течение 30 мин. В колбу подают ток азота, после дегазации содержимого колбы ее нагревают с 70°С до 320°С со скоростью 2°С/мин с постепенным увеличением мощности плитки. Колбу выдерживают при 320°С в течение 25 мин, затем извлекают из масляной бани и содержимое колбы оставляют остывать до комнатной температуры, проводя эти стадии синтеза в атмосфере азота. Через 30 мин содержимое колбы выливают в химический стакан, содержащий 80,0 мл осадителя изопропанола, после чего содержимое стакана перемешивают. Выпавший в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 10,0 мл триоктиламина, 0,284 г олеиновой кислоты и 0,912 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают азотом, колбу помещают в масляную баню и нагревают до 350°С со скоростью 2°С/мин, после чего туда в атмосфере азота по каплям вводят раствор 18,000 г олеата железа(III) в 22,0 мл триоктиламина в течение 10 ч. Затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере азота. После чего содержимое колбы переносят в химический стакан, содержащий 200,0 мл осадителя изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 1,701 г кристаллов магнетита с размером 25 нм.

345 мг (138 мас. ч.) полученных кристаллов магнетита и 2,5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 100 мл (60000 мас. ч.) хлороформа, затем с 149 мл (60000 мас. ч.) воды, после чего полученную смесь обрабатывают в течение 30 мин ультразвуком с помощью помещенного в реакционную среду ультразвукового щупа мощностью 20 Вт. При этом хлороформ испаряется из-за побочного нагрева дисперсии при воздействии на нее ультразвука.

50 мл полученной дисперсии, содержащей 116 мг (1 мас. ч.) модифицированных липидами кристаллов магнетита, смешивают с 10 мл водного раствора ацетата натрия с концентрацией 25 мМ, содержащего 23,20 мг (0,20 мас. ч.) миРНК. Затем полученную дисперсию помещают в диализный мешок с размером пор 25 кДа и проводят очистку полученной дисперсии диализом против воды в течение 48 ч. Очищенную дисперсию переносят в шприц и в стерильных условиях проводят ее стерилизацию путем фильтрации через шприцевой фильтр с размером пор 0,22 мкм. В стерильной дисперсии вышеописанным способом определяют содержание железа с последующим его пересчетом на магнетит, а также определяют содержание в ней миРНК.

Одну таблетку стандартного натрий-фосфатного таблетированного буфера марки Gibco® PBS Tablet растворяют в 10 мл дистиллированной воды. Далее 5 мл буфера добавляют к 45 мл стерилизованной дисперсии с получением дисперсии с ионной силой 0,15 М.

Клетки гепатоцеллюлярной карциномы человека Huh7 высевают в 12-луночный планшет в количестве 2×105 клеток в лунке в среде DMEM (Corning, №10-013-CV), содержащей 4,5 г/л глюкозы, 10% эмбриональной бычьей сыворотки и 4 мМ L-глутамина. Затем в каждую из лунок вводят аликвоты ранее полученной стерильной дисперсии с конечной концентрацией миРНК в клеточной среде равной 20 наномоль/л и общим конечным объемом смеси по 1 мл в каждой лунке. Культуральный планшет после 2 ч инкубации при 37°С в атмосфере воздуха, содержащего 5% CO2, помещают в генератор переменного магнитного поля марки Tor 03/15 НТ и включают магнитное поле с частотой 45 герц и индуктивностью 50 миллитесла. Общее время нахождения в магнитном поле - 1 ч. Далее культуральный планшет помещают в инкубатор, где оставляют при 37°С в атмосфере воздуха, содержащего 5% CO2, на 48 ч. Степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, составляет 91%.

Пример 2.

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 15,0 мл октадецена, 0,900 г олеата железа(III), 0,280 г олеиновой кислоты и 0,610 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°С со скоростью 5°С/мин и выдерживают при этой температуре в течение 30 мин. В колбу подают ток аргона и после дегазации содержимого колбы ее нагревают с 70°С до 320°С со скоростью 5°С/мин, затем содержимое колбы выдерживают при 320°С в течение 30 мин, после чего колбу извлекают из масляной бани и оставляют остывать до комнатной температуры в атмосфере аргона. Через 60 мин содержимое колбы выливают в химический стакан, содержащий 30 мл осадителя изопропанола, после чего содержимое стакана перемешивают. Выпавшие в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 8,0 мл октадецена, 0,057 г олеиновой кислоты и 0,180 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают аргоном, колбу помещают в масляную баню и нагревают со скоростью 5°С/мин до 318°С, после чего туда в атмосфере аргона по каплям вводят раствор 9,00 г олеата железа(III) в 18 мл октадецена в течение 5 ч. Затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона. После этого содержимое колбы переносят в химический стакан, содержащий 110 мл осадителя изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 0,851 г кристаллов магнетита с размером 23 нм.

691 мг (138 мас. ч.) полученных кристаллов магнетита и 5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 100 мл (60000 мас. ч.) хлороформа, затем с 223,5 мл (90000 мас. ч.) воды, после чего полученную смесь обрабатывают в течение 50 мин ультразвуком с помощью помещенного в реакционную среду ультразвукового щупа мощностью 80 Вт. При этом хлороформ испаряется из-за побочного нагрева дисперсии при воздействии на нее ультразвука.

100 мл полученной дисперсии, содержащей 309 мг (1 мас. ч.) модифицированных липидами кристаллов магнетита, смешивают с 10 мл водного раствора ацетата натрия с концентрацией 25 мМ, содержащего 15,45 мг (0,05 мас. ч.) миРНК. Затем полученную дисперсию помещают в диализный мешок с размером пор 50 кДа и проводят очистку полученной дисперсии диализом против воды в течение 36 ч. Очищенную дисперсию переносят в шприц и в стерильных условиях проводят ее стерилизацию путем фильтрации через шприцевой фильтр с размером пор 0,22 мкм. В стерильной дисперсии вышеописанным способом определяют содержание железа с последующим его пересчетом на магнетит, а также определяют содержание в ней миРНК.

Одну таблетку стандартного натрий-фосфатного таблетированного буфера марки Gibco® PBS Tablet растворяют в 10 мл дистиллированной воды. Далее 5 мл буфера добавляют к 45 мл стерилизованной дисперсии с получением дисперсии с ионной силой 0,15 М.

Клетки гепатоцеллюлярной карциномы человека Huh7 высевают в 12-луночный планшет в количестве 2×105 клеток в лунке в среде DMEM (Corning, №10-013-CV), содержащей 4,5 г/л глюкозы, 10% эмбриональной бычьей сыворотки и 4 мМ L-глутамина. Затем в каждую из лунок вводят аликвоты ранее полученной стерильной дисперсии с конечной концентрацией миРНК в клеточной среде равной 20 наномоль/л и общим конечным объемом смеси по 1 мл в каждой лунке. Культуральный планшет после 2 ч инкубации при 37°С в атмосфере воздуха, содержащего 5% CO2, помещают в генератор переменного магнитного поля и включают магнитное поле с частотой 45 герц и индуктивностью 80 миллитесла. Общее время нахождения в магнитном поле - 2 ч. Далее культуральный планшет помещают в инкубатор, где оставляют при 37°С в атмосфере воздуха, содержащего 5% CO2, на 48 ч. Степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, составляет 87%.

Пример 3.

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 25,0 мл октадецена, 0,177 г ацетилацетоната железа(III), 0,142 г олеиновой кислоты и 0,456 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°С со скоростью 2°С/мин и выдерживают при этой температуре в течение 30 мин. В колбу подают ток аргона и после дегазации содержимого колбы ее нагревают с 70°С до 320°С со скоростью 4°С/мин, затем колбу выдерживают при 320°С в течение 60 мин, после чего колбу извлекают из масляной бани и содержимое колбы оставляют остывать до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона. Через 120 мин содержимое колбы выливают в химический стакан, содержащий 75,0 мл осадителя изопропанола, после чего содержимое стакана перемешивают. Выпавшие в осадок кристаллов магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 12,0 мл дибензилового эфира, 0,068 г олеиновой кислоты и 0,219 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают аргоном, колбу помещают в масляную баню и нагревают до 290°С со скоростью 6°С/мин. После чего туда в атмосфере аргона по каплям подают раствор 1,368 г олеата железа(III) в 38,0 мл дибензилового эфира в течение 1 ч, затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона, и содержимое колбы переносят в химический стакан, содержащий 100,0 мл осадителя изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 0,155 г кристаллов магнетита с размером 27 нм.

138 мг (138 мас. ч.) полученных кристаллов магнетита и 1 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 100 мл (60000 мас. ч.) хлороформа, затем с 298 мл (120000 мас. ч.) воды, после чего полученную смесь обрабатывают в течение 20 мин ультразвуком мощностью 100 ватт с помощью помещенного в смесь ультразвукового щупа. При этом хлороформ испаряется из-за побочного нагрева дисперсии при воздействии на нее ультразвука.

70 мл полученной дисперсии, содержащей 32,4 мг (1 мас. ч.) модифицированных липидами кристаллов магнетита, смешивают с 10 мл водного раствора ацетата натрия с концентрацией 25 мМ, содержащего 3,24 мг (0,10 мас. ч.) миРНК. Затем полученную дисперсию помещают в диализный мешок с размером пор 50 кДа и проводят очистку полученной дисперсии диализом против воды в течение 48 ч. Очищенную дисперсию переносят в шприц и в стерильных условиях проводят ее стерилизацию путем фильтрации через шприцевой фильтр с размером пор 0,45 мкм. В стерильной дисперсии вышеописанным способом определяют содержание железа с последующим его пересчетом на магнетит, а также определяют содержание в ней миРНК.

Одну таблетку стандартного натрий-фосфатного таблетированного буфера марки Gibco® PBS Tablet растворяют в 10 мл дистиллированной воды. Далее 5 мл буфера добавляют к 45 мл стерилизованной дисперсии с получением дисперсии с ионной силой 0,15 М.

Клетки гепатоцеллюлярной карциномы человека Huh7 высевают в 12-луночный планшет в количестве 2×105 клеток в лунке в среде DMEM (Corning, №10-013-CV), содержащей 4,5 г/л глюкозы, 10% эмбриональной бычьей сыворотки и 4 мМ L-глутамина. Затем в каждую из лунок вводят аликвоты ранее полученной стерильной дисперсии с конечной концентрацией миРНК в клеточной среде равной 20 наномоль/л и общим конечным объемом смеси по 1 мл в каждой лунке. Культуральный планшет после 2 ч инкубации при 37°С в атмосфере воздуха, содержащего 5% CO2, помещают в генератор переменного магнитного поля и включают магнитное поле с частотой 37 герц и индуктивностью 100 миллитесла. Общее время нахождения в магнитном поле - 3 ч. Далее культуральный планшет помещают в инкубатор, где оставляют при 37°С в атмосфере воздуха, содержащего 5% CO2, на 48 ч. Степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, составляет 93%.

Пример 4 (контрольный, без воздействия на смесь магнитного поля)

Опыт проводят аналогично примеру 1, однако после смешения липидных наночастиц со средой с опухолевыми клетками наложение магнитного поля не проводят. Степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, составляет 40%.

Пример 5 (контрольный, по прототипу)

Опыт проводят аналогично прототипу, однако оценку степени обратимого ингибирования экспрессии проводят на линии клеток Huh7 гепатоцеллюлярной карциномы человека, а не Нера1-6 мыши.

20 мг 2-{4-[(3b)-холест-5-ен-3-илокси]бутокси}-N,N-диметил-3-[(9Z,12Z)-октадека-9,12-диен-1-илокси]пропан-1-амина, 8,62 мг холестерина и 6,83 мг 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000 смешивают сначала с 1 мл этанола, а затем с 1 мл раствора цитратного буфера с рН 4, содержащего 2,73 мг миРНК, комплементарной к мРНК, кодирующей апоВ. Полученную смесь очищают от этанола путем многократной диафильтрации с использованием мембраны с размером пор 25 кДа. Очищенную дисперсию переносят в шприц и проводят ее стерилизацию путем фильтрации через шприцевой фильтр с размером пор 0,45 мкм в стерильных условиях. В стерильной дисперсии вышеописанным способом определяют содержание в ней миРНК.

Одну таблетку стандартного натрий-фосфатного таблетированного буфера марки Gibco® PBS Tablet растворяют в 10 мл дистиллированной воды. Далее 5 мл буфера добавляют к 45 мл стерилизованной дисперсии с получением дисперсии с ионной силой 0,15 М.

Клетки гепатоцеллюлярной карциномы человека Huh7 высевают в 12-луночный планшет в количестве 2×105 клеток в лунке в среде DMEM (Corning, №10-013-CV), содержащей 4,5 г/л глюкозы, 10% эмбриональной бычьей сыворотки и 4 мМ L-глутамина. Затем в каждую из лунок вводят аликвоты ранее полученной стерильной дисперсии с конечной концентрацией миРНК в клеточной среде равной 20 наномоль/л и общим конечным объемом смеси по 1 мл в каждой лунке. Далее культуральный планшет помещают в инкубатор, где оставляют при 37°С в атмосфере 5% CO2 в течение еще 48 часов. Степень обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез апоВ, составляет 34%.

Таким образом, из приведенных примеров видно, что предложенный способ действительно повышает степень обратимого ингибирования в опухолевых клетках Huh7 гепатоцеллюлярной карциномы человека экспрессии гена, кодирующего синтез апоВ, с 34% (прототип) до 87-93%, т.е. в 2,5-2,7 раза.

Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В, включающий введение дисперсии липидных наночастиц, содержащих связанную с ними малую интерферирующую рибонуклеиновую кислоту, комплементарную к матричной рибонуклеиновой кислоте, кодирующей последовательность аполипопротеина B в опухолевой клетке, в среду с опухолевыми клетками, отличающийся тем, что в качестве липидных наночастиц используют наночастицы модифицированных кристаллов магнетита, полученные смешением 138 мас.ч. кристаллов магнетита с размером 23-27 нм с 1 мас.ч. смеси липидов холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и аммонийной соли 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоля)-2000], взятых в массовом соотношении 15:7:75:3 соответственно, вначале с 60000 мас.ч. хлороформа, затем с 60000-120000 мас.ч. воды, смесь обрабатывают ультразвуком в течение 20-60 мин с использованием помещенного в смесь ультразвукового щупа, смешение 1 мас.ч. полученной дисперсии модифицированных кристаллов магнетита выполняют с раствором малой интерферирующей рибонуклеиновой кислоты в водном растворе ацетата натрия, содержащем 0,05-0,20 мас.ч. малой интерферирующей рибонуклеиновой кислоты, очищают полученную дисперсию диализом против воды и добавляют в дисперсию натрий-фосфатный буфер до получения дисперсии с ионной силой 0,15 М, в качестве среды с опухолевыми клетками используют среду с опухолевыми клетками Huh7 гепатоцеллюлярной карциномы человека, причем после введения дисперсии липидных наночастиц в среду с опухолевыми клетками полученную смесь обрабатывают в течение 1-3 ч переменным магнитным полем с индуктивностью 50-100 миллитесла.
Источник поступления информации: Роспатент

Показаны записи 131-140 из 322.
29.12.2017
№217.015.fda7

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002638069
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0253

Способ получения альфа-оксида алюминия высокой чистоты

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в...
Тип: Изобретение
Номер охранного документа: 0002630212
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0276

Способ получения тонколистового проката из бор-содержащего алюминиевого сплава

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из борсодержащего алюминиевого...
Тип: Изобретение
Номер охранного документа: 0002630186
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02e5

Способ получения слитков и тонколистового проката из бор-содержащего алюминиевого сплава

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из слитков борсодержащего...
Тип: Изобретение
Номер охранного документа: 0002630185
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02f0

Линейка прошивного стана

Изобретение относится к области производства бесшовных горячекатаных труб на станах винтовой прокатки. Линейка предназначена для повышения износостойкости рабочей поверхности линеек прошивного стана. Линейка имеет рабочую поверхность, включающую входной конус, пережим и выходной конус, и...
Тип: Изобретение
Номер охранного документа: 0002630188
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.02ff

Способ извлечения скандия из красных шламов

Изобретение относится к области металлургии цветных металлов, в частности к извлечению скандия из красных шламов - отходов глиноземного производства. Способ включает выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газовоздушной смесью, содержащей...
Тип: Изобретение
Номер охранного документа: 0002630183
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.030b

Композиционный материал с металлической матрицей и упрочняющими наночастицами и способ его изготовления

Группа изобретений относится к получению композиционного материала, содержащего металлическую матрицу и упрочняющие наночастицы. Способ включает подготовку смеси исходных материалов и ее механическое легирование. Исходная смесь содержит материал металлической матрицы, выбранный из ряда,...
Тип: Изобретение
Номер охранного документа: 0002630159
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0327

Способ подготовки заготовки к винтовой прокатке

Изобретение относится к обработке металлов давлением, а именно к винтовой прокатке. Способ включает отрезание заготовки необходимой длины от подката роликами. Оптимизация формы торцов заготовок с точки зрения возможности уменьшения торцевой утяжки при последующей прокатке обеспечивается за счет...
Тип: Изобретение
Номер охранного документа: 0002630158
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.036c

Способ извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита

Изобретение относится к получению материалов для химической и электронной промышленности, обогащению минерального сырья, предназначено для извлечения из дисперсного углерод-катализаторного композита в отдельный продукт углеродных нанотрубок, применяющихся в производстве сорбентов, носителей...
Тип: Изобретение
Номер охранного документа: 0002630342
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0394

Узел безлопастного вентилятора для эвакуации газопылевых выбросов из промышленных агрегатов

Изобретение относится к вентилятору, не имеющему лопастей в зоне выхода потока и предназначенному для систем эвакуации газопылевых выбросов из промышленных агрегатов. Узел безлопастного вентилятора для эвакуации газопылевых выбросов из промышленных агрегатов содержит кольцевую...
Тип: Изобретение
Номер охранного документа: 0002630443
Дата охранного документа: 07.09.2017
Показаны записи 41-42 из 42.
12.04.2023
№223.018.4462

Диспироиндолиноны на основе роданинов как ингибиторы р53-mdm2 белок-белкового взаимодействия

Изобретение относится к соединениям формулы 1, где R выбран из группы, включающей 4-этоксифенил, 4-хлорфенил, 4-бромфенил; R выбран из группы, включающей фенил, 4-этоксифенил, 2-хлорфенил, 3-хлорфенил, 4-хлорфенил, 4-этилфенил, 3,4-диметоксифенил, 4-метоксифенил, 4-фторфенил, 2-метилфенил; R...
Тип: Изобретение
Номер охранного документа: 0002730286
Дата охранного документа: 21.08.2020
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
+ добавить свой РИД