×
19.01.2018
218.016.036c

Результат интеллектуальной деятельности: Способ извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению материалов для химической и электронной промышленности, обогащению минерального сырья, предназначено для извлечения из дисперсного углерод-катализаторного композита в отдельный продукт углеродных нанотрубок, применяющихся в производстве сорбентов, носителей катализаторов, неподвижных хроматографических фаз, композиционных материалов и функциональных покрытий и др. Способ извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита заключается в репульпировании композита в воде при соотношении Т:Ж=1:3-Т:Ж=1:5 с интенсивным перемешиванием пульпы при скорости вращения мешалки 200-1000 об/мин, кондиционировании пульпы с добавлением реагентов на основе ацетиленовых или высших алифатических спиртов, флотации углеродных нанотрубок в пенный продукт, промывке углеродных нанотрубок водой с последующими декантацией и сушкой при температуре 90-200°C. Технический результат - повышение эффективности и производительности извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита. 3 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к получению материалов для химической и электронной промышленности, обогащению минерального сырья, предназначено для извлечения из дисперсного углерод-катализаторного композита в отдельный продукт углеродных нанотрубок, применяющихся в производстве сорбентов, носителей катализаторов, неподвижных хроматографических фаз, композиционных материалов, функциональных покрытий и др.

Свойства аллотропных модификаций углерода радикально отличаются, например свойства сажи и алмаза. Углеродные нанотрубки получают искусственно, они состоят из атомов углерода в кристаллической аллотропии, представляют собой цилиндрические кристаллы. Структура и свойства углеродных нанотрубок отличаются от структуры и свойств графита и аморфного углерода - угля и сажи. Длина углеродных нанотрубок в зависимости от метода и режима получения составляет до 1000 нм и более, диаметр 4-8 нм. Углеродные нанотрубки отличаются от других модификаций углерода размерами частиц, окисляемостью, электропроводностью, плотностью, свойствами поверхности и др.

Углеродные нанотрубки получают электроразрядом на графитовых электродах и при разложении газообразных углеводородов (ацетилен, метан, этилен и др.), проходящих через нагретый до 600-1000°С катализатор. В качестве катализатора используются материалы (графит, цеолит, силикагель и др.), которые содержат или на которые нанесены металлы или их соединения - синтетические катализаторы, или применяется содержащее металлы природное рудное сырье - руда или концентрат. Рудные катализаторы значительно дешевле и доступнее, чем синтетические катализаторы. Продолжительность получения нанотрубок на синтетических катализаторах составляет 10-17 ч (RU №2146648, опубл. 20.03.2000), на природном рудном сырье - марганцевой руде, несколько минут (RU №2457175, опубл. 27.07.2012).

Электроразрядным методом образуются нанотрубки относительно небольшого размера, их выход составляет не более 25% от общей массы углерода. Этим методом практически невозможно регулировать размеры нанотрубок и сложно выделять чистую фракцию нанотрубок, не содержащую примесей других модификаций углерода - графита и аморфного углерода.

Каталитическим методом можно получать практически весь углерод в виде нанотрубок при низком содержании или отсутствии аморфного углерода, регулировать размеры и другие свойства трубок, получать однослойные и многослойные, прямые, наклонные и скрученные нанотрубки фуллеренового диаметра, волокна и др. Использование дисперсного катализатора позволяет значительно увеличить выход нанотрубок.

При получении углеродных нанотрубок на поверхности катализатора создаются центры роста нанотрубок, которые эпитаксиально связаны с катализатором, то есть образуется углерод-катализаторный композит, в котором трубки составляют единое целое с катализатором. Для получения качественного материала углеродных нанотрубок необходимо их отделить от катализатора без значительных повреждений и извлечь в отдельный продукт с минимальным количеством примесей.

Разделение углеродных нанотрубок, графита и аморфного углерода проводится с использованием измельчения, окисления при высокой температуре, вследствие различия окисляемости аллотропных форм углерода, и обогащения, основанного на различии размеров и плотности частиц, например центрифугирования. Известные способы отделения углеродных нанотрубок от примесных частиц графита очень сложны и требуют высоких затрат (US №5695734, опубл. 09.12.1997, US №5641466, опубл. 24.06.1997, US №5560898, опубл. 01.10.1996).

Применение для извлечения углеродных нанотрубок из углерод-катализаторного композита механической оттирки катализатора приводит к обламыванию нанотрубок на короткие сегменты и образованию большого количества мелких частиц, что снижает качество продукта углеродных нанотрубок и его применение.

Для выделения углеродных нанотрубок в основном применяется растворение катализатора кислотами и их смесями при нагревании, также в сочетании с ультразвуковым воздействием, с отмывкой нанотрубок от образовавшихся солей (MacKenzie К., Dunens О., Harris А.Т. A review of carbon nanotube purification by microwave assisted acid digestion // Separation and purification Technology. - 2009. - Vol. 66. - P. 209-222; RU №2146648, опубл. 20.03.2000, RU №2379387, опубл. 20.01.2010). Основными недостатками этого способа являются разрушающее воздействие сильных кислот на стенки углеродных нанотрубок, появление большого количества нежелательных кислородсодержащих функциональных групп на их поверхности (Liangti Qu, Kyung Min Lee, Liming Dai // Functionalization and application of carbon nanotubes // Carbon nanotechnology. Elsevier. - 2006. - Ch. 7. - P. 155-234). Металлические частицы катализатора инкапсулируются во внутренней полости трубки и становятся недоступными для реагентов и загрязняют продукт. Для реализации способов требуется большой расход кислот, затрат энергии на нагревание, катализатор безвозвратно теряется, что приводит к высокой стоимости реализации способа, кроме того, нагретые кислоты оказывают вредное воздействие на здоровье персонала.

Известны способы извлечения углистых веществ флотацией с использованием реагентов из измельченной золотосодержащей руды (RU №2483808, опубл 10.06.2013, RU №2339454, опубл. 27.11.2008) и обогащение угля флотацией (RU №2457905, опубл.. 10.08.2012, RU №2004343, опубл. 15.12.1993). Эти способы предназначены для извлечения веществ аморфной аллотропии углерода и не подходят для извлечения углеродных нанотрубок кристаллической аллотропии характерной формы.

Наиболее близким по технической сути к изобретению является способ отделения углеродных нанотрубок от графита, включающий тонкое измельчение материала, диспергирование в жидкой среде, разделение частиц центрифугированием и микрофильтрацией, прокаливание твердой фазы в кислородсодержащей атмосфере при температуре отжига графитовых частиц (US №5560898, опубл. 01.10.1996).

Недостатками способа является повреждение нанотрубок при тонком измельчении материала и, соответственно, снижение качества материала нанотрубок, низкая эффективность отделения нанотрубок центрифугированием и производительность микрофильтрации, большое количество операций и затрат на прокаливание и в результате невысокая экономичность реализации способа.

Техническим результатом изобретения является повышение эффективности, экономичности и производительности извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита, сохранение свойств образованных нанотрубок в продукте, простота реализации способа.

Указанный технический результат извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита достигается репульпированием композита в воде при соотношении Т:Ж=1:3 - Т:Ж=1:5 с интенсивным перемешиванием пульпы при скорости вращения мешалки 200-1000 об/мин, кондиционированием пульпы с добавлением реагентов на основе ацетиленовых или высших алифатических спиртов, флотацией углеродных нанотрубок в пенный продукт, промывкой углеродных нанотрубок водой с последующими декантацией и сушкой при температуре 90°С-200°С.

Частными случаями реализации изобретения являются репульпирование углерод-катализаторного композита в воде с интенсивным перемешиванием продолжительностью 5-45 минут, кондиционирование пульпы с реагентом продолжительностью 3-30 минут, флотации углеродных нанотрубок в пенный продукт продолжительностью 5-60 минут.

В изобретении извлечение образованных на дисперсном катализаторе углеродных нанотрубок и эпитаксиально связанных с поверхностью катализатора из углеродно-катализаторных композитов в отдельный продукт без растворения катализатора состоит из двух основных операцией: отсоединение, отрыв нанотрубок от поверхности катализатора и разделение отделенных нанотрубок и частиц катализатора в продукты.

В изобретении для минимального разрушения, повреждения углеродных нанотрубок отрыв их от катализатора осуществляется мягким гидродинамическим воздействием - интенсивным перемешиванием композита в воде в отличие от применения ультразвука или измельчения в аналогах и прототипе. Отсоединение углеродных нанотрубок от поверхности катализатора наиболее эффективно до 99% при репульпировании композита в воде при соотношении Т:Ж=1:3 - Т:Ж=1:5, где твердая фаза - композит, жидкая фаза - вода, с интенсивным перемешиванием со скоростью вращения мешалки 200-1000 об/мин, продолжительностью перемешивания 5-45 минут. Режим репульпирования выбирается в зависимости от содержания нанотрубок в композите, их длины и диаметра: при уменьшении содержания нанотрубок, увеличении их длины и уменьшении диаметра плотность пульпы уменьшается, соотношение Т:Ж - увеличивается, и соответственно перемешивание осуществляется при меньшей скорости вращения и продолжительности перемешивания.

В изобретении для разделения отсоединенных нанотрубок и катализатора в отдельные продукты применяется производительный, эффективный и экономичный процесс пенной флотации с использованием небольшого расхода реагентов и энергии, просто реализуемый, который не изменяет состав и свойства нанотрубок, в отличие от применения растворения катализатора кислотами, прокаливания при температуре отжига, микрофильтрации и др. Разделение нанотрубок и катализатора флотацией включает кондиционирование пульпы воздухом с добавлением реагентов и флотации с выделением нанотрубок в пенный продукт. Кондиционированием подготавливается поверхность углеродных нанотрубок к флотации, сорбция на поверхности реагентов. Продолжительность кондиционирования составляет от 3 до 30 минут и зависит от плотности пульпы и применяемых реагентов: при увеличении соотношения Т:Ж продолжительность кондиционирования уменьшается. Для извлечения нанотрубок в пенный продукт флотацией в качестве реагентов могут использоваться собиратели и активаторы, пенообразователи и депрессоры. Наибольшее извлечение в пенный продукт нанотрубок флотацией достигается применением реагентов основе ацетиленовых или высших алифатических спиртов. При продолжительности флотации углеродных нанотрубок 5-60 минут с применением реагентов извлечение нанотрубок в пенный продукт составляет до 99,5%. Для получения готового продукта углеродных нанотрубок пенный продукт промывают водой для удаления флотореагентов, обезвоживают декантацией и сушат при температуре 90°С-200°С.Катализатор, остающийся в камерном продукте, может использоваться повторно для каталитического получения углеродных нанотрубок или для других целей.

По изобретению извлечение углеродных нанотрубок из дисперсного углерод-катализаторного композита более эффективно, чем по аналогам и прототипу, так как извлечение в пенный продукт нанотрубок достигает 99,5%, больше чем центрифугированием и растворением катализатора кислотами, продукт нанотрубок содержит меньше примесей, качество получаемого продукта нанотрубок выше, так как они не разрушаются в операциях извлечения.

Большая производительность извлечения нанотрубок обеспечивается меньшим количеством операций и небольшим временем флотации, составляющим в сумме 15-135 минут, обезвоживания декантацией и сушки углеродных нанотрубок в отличие от продолжительных операций растворения катализатора кислотами при нагревании, микрофильтрации тонкоизмельченных частиц, отжига и др.

Большая экономичность реализации изобретения обеспечивается низким расходом реагентов (100-200 г/т) и энергии для извлечения флотацией, меньшим количеством операций и продолжительностью операций флотации и декантирования по сравнению с операциями растворения, измельчения, прокаливания и микрофильтрации, а также получения продукта нанотрубок более высокого качества и сохранением катализатора для повторного использования.

В получаемом по изобретению продукте сохраняются свойства углеродных нанотрубок вследствие мягкого гидродинамического режима отрыва нанотрубок от поверхности катализатора в отличие от тонкого измельчения и механической оттирки, при котором трубки обламываются на сегменты; отсутствия химического воздействия на нанотрубки растворителей катализатора при нагревании и отжига в кислородсодержащей среде, при которых разрушаются стенки нанотрубок, появляется большое количество нежелательных кислородсодержащих функциональных групп на их поверхности.

Способ просто реализуется, так как используется практически одна операция флотации, осуществляемая в флотомашине, небольшая продолжительность операции в отличие от применения нескольких операций: измельчения в мельнице, центрифугирования, прокаливания в печах, и др.

Пример 1 реализации изобретения

Полученные пиролизом метана на дробленой марганцевой руде крупностью -3,0+1,0 мм углеродные нанотрубки диаметром 4-6 нм, длиной до 1000-1200 нм извлекались из дисперсного углеродно-катализаторного композита, в котором содержание углерода составляло 32,1%, что соответствует содержанию нанотрубок в композите (таблица).

Углеродно-катализаторный композит репульпировался в воде при Т:Ж=1:5 во флотомашине с перемешиванием со скоростью вращения мешалки 200-400 об/мин в течение 5-10 минут. Кондиционирование пульпы проводилось с расходом воздуха 475 дм3/мин продолжительностью 3-5 минут с добавлением реагентов на основе высших алифатических спиртов С712 или ацетиленовых спиртов: диметил (изопропенилэтинил) карбинола (СН3)2С(ОН)С=С-С(СН3)=СН2 (ДМИПЭК) или 3-метилбутинол-3 (СН3)2С(ОН)С=СН (ДК-80). Продолжительность флотации составляла 6 минут, пенный продукт углеродных нанотрубок промывался водой, декантировался и сушился при температуре 180-200°С.

Извлечение углеродных нанотрубок в пенный продукт без применения реагентов составило 56%, при выходе 18%, с применением реагентов извлечение углеродных нанотрубок увеличилось до 87,9-96,5%, выход пенного продукта до 28,2-30,9%. Более эффективно нанотрубки извлекаются в пенный продукт с применением реагента ДК-80: извлечение достигает 96,5% при расходе реагента 170 г/т, что на 4,2% и 8,6% больше, чем с применением раствора спиртов С712 и реагента ДМИПЭК, выход пенного продукта с использованием ДК-80 составляет 30,9%, больше на 1,3% и на 2,7%, соответственно. Наибольшее извлечение углеродных нанотрубок достигается при расходе реагентов на флотацию 150-200 г на тонну композита. Марганцевая руда после отделения нанотрубок может использоваться повторно для получения углеродных нанотрубок или в металлургии.

Пример 2 реализации изобретения

Образованные пиролизом на дисперсном синтетическом катализаторе крупностью гранул -0,5+0,2 мм, содержащем около 80% железа, 5% кобальта и 15% оксида алюминия, углеродные нанотрубки диаметром 5-8 нм, длиной 800-1000 нм, извлекались из углерод-катализаторного композита, содержащего нанотрубок углеродных 63,5%.

Углеродно-катализаторный композит репульпировался в воде при Т:Ж=1:3 с интенсивным перемешиванием со скоростью вращения мешалки 1000 об/мин, продолжительностью 45 минут, затем пульпа кондиционировалась в течение 30 минут с добавлением реагента ДК-80 - 3-метилбутинол-3 (СН3)2С(ОН)С=СН в количестве 200 г/т, пенной флотации в течение 60 минут. Пенный продукт после флотации промывался водой и высушивался при температуре 90-100°С.

Извлечение углеродных нанотрубок в пенный продукт составило 99,4%, выход 62,7% из 63,7%, следовательно содержание примесей в продукте небольшое. Изучение структуры углеродно-катализаторного композита и пенного продукта микроскопированием показало, что нанотрубки не повреждены и сохраняется их исходная длина и форма.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 179.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
+ добавить свой РИД