×
02.09.2019
219.017.c62c

Результат интеллектуальной деятельности: КРИСТАЛЛИЧЕСКИЙ ОКСИГИДРОКСИД-МОЛИБДОВОЛЬФРАМАТ ПЕРЕХОДНОГО МЕТАЛЛА

Вид РИД

Изобретение

№ охранного документа
0002698819
Дата охранного документа
30.08.2019
Аннотация: Разработан активный катализатор гидрообработки, предназначенный для использования в процессах конверсии углеводородов: гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродесиликации, гидродеароматизации, гидроизомеризации, гидроочистки, гидрофайнинга и гидрокрекинга. Катализатор представляет собой материал кристаллического оксигидроксида-молибдовольфрамата металла, имеющего формулу: (NH)M(OH)MoWO, где а находится в диапазоне от 0,1 до 10; М представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; b находится в диапазоне от 0,1 до 2; х находится в диапазоне от 0,5 до 1,5; у находится в диапазоне от 0,01 до 0,4; где сумма (x+y) должна быть ≤1,501; z представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A: Таблица А 3 н. и 7 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

Притязание на приоритет предшествующей национальной заявки

В данной заявке испрашивается приоритет на основании заявки US № 62/267,870 от 15 декабря 2015 года, содержание которой включено в настоящее описание посредством ссылки.

Область техники, к которой относится изобретение

Данное изобретение относится к новому катализатору гидрообработки. В частности, данное изобретение относится к уникальному кристаллическому оксигидроксиду-молибдовольфрамату переходного металла и к его использованию в качестве катализатора гидрообработки. Гидрообработка может включать гидроденитрификацию, гидрообессеривание, гидродеметаллирование, гидродесиликацию, гидродеароматизацию, гидроизомеризацию, гидроочистку, гидрофайнинг и гидрокрекинг.

Предпосылки создания изобретения

В целях удовлетворения растущего спроса на нефтепродукты происходит более широкое использование сернистых сырых нефтей, что, в сочетании с более строгим природоохранным законодательством в отношении концентрации азота и серы в топливе, приводит к акцентированию проблем нефтепереработки. Удаление серосодержащих (гидродесульфуризация - HDS) и азотсодержащих (гидроденитрификация - HDN) соединений из топливного сырья является целью стадий гидроочистки при нефтепереработке и достигается с помощью конверсии органического азота и серы в аммиак и сероводород, соответственно.

С конца 1940-х годов использование катализаторов, содержащих никель (Ni) и молибден (Mo) или вольфрам (W), демонстрировало удаление до 80% серы. См., например, V. N. Ipatieff, G. S. Monroe, R. E. Schaad, Division of Petroleum Chemistry, 115th Meeting ACS, San Francisco, 1949. В течение нескольких десятилетий сейчас отмечается интенсивный интерес к разработке материалов для катализа глубокого обессеривания с целью снижения концентрации серы до уровня миллионных долей. Некоторые последние важнейшие достижения сфокусированы на разработке и применении более активных и стабильных катализаторов, предназначающихся для производства сырья для топлива со сверхнизким содержанием серы. В нескольких исследованиях продемонстрировано повышение HDS и HDN активностей за счет исключения носителя, такого как, например, Al2O3. Использование материалов насыпного типа без носителя обеспечивает путь к повышению загрузки активной фазы в реактор, а также к созданию альтернативных химических способов получения таких катализаторов.

Более поздние исследования в этой области были сфокусированы на свойствах сверхглубокого обессеривания, достигаемых с помощью «триметаллического» Ni-Mo/W материала без носителя, как сообщается, например, в US 6,156,695. Регулируемый синтез преимущественно аморфного смешанного оксида металла, состоящего из молибдена, вольфрама и никеля, значительно превосходит традиционные катализаторы гидроочистки. Химическую структуру материала триметаллического смешанного оксида металла уподобляли семейству материалов гидроталькита, ссылаясь на литературные статьи, детально описывающие синтез и характерные признаки слоистого никель-молибдатного материала, утверждающие, что частичное замещение молибдена вольфрамом приводит к образованию преимущественно аморфной фазы, которая после разложения за счет сульфидирования приводит к повышению активности гидроочистки.

Химия этих слоистых гидроталькитоподобных материалов была впервые изучена H. Pezerat в Contribution à l'étude des molybdates hydrates de zinc, cobalt et nickel, C. R. Acad. Sci., 261, 5490, который определил последовательность фаз, имеющих идеальные формулы MMoO4·H2O, EHM2O-(MoO4)2·H2O, и E2-x(H3O)xM2O(MoO4)2, где E может быть NH4+, Na+ или K+, и M может быть Zn2+, Co2+ или Ni2+.

Pezerat обозначил различные фазы, которые он наблюдал, как Φc, Φх или Φy, и определил кристаллические структуры для Φx и Φy, однако из-за сочетания малого размера кристаллита, ограниченных кристаллографических возможностей и сложной природы материала появились сомнения относительно качества оценки структуры материалов. В середине 1970-х годов Clearfield и др. пытались провести более подробный анализ фаз Φx и Φy, см., например, A. Clearfield, M. J. Sims, R. Gopal, Inorg. Chem., 15, 335; A. Clearfield, R. Gopal, C. H. Saldarriaga-Molina, Inorg. Chem., 16, 628. Исследования на монокристалле продукта в результате гидротермического подхода позволили подтвердить структуру Φx, однако попытки синтеза Φy не удались, и вместо этого синтезировали альтернативную фазу, Na-Cu(OH)(MoO4), см., A. Clearfield, A. Moini, P. R. Rudolf, Inorg. Chem., 24, 4606.

Структура Φy не была подтверждена вплоть до 1996 года, когда исследование Ying et al. метода синтеза chimie douce при комнатной температуре, нацеленное на слоистый аммониевый молибдат цинка, привело к метастабильной алюмозамещенной цинкитовой фазе, полученной прокаливанием Zn/Al слоистого двойного гидроксида (Zn4Al2(OH)12CO3·zH2O). См., например, D. Levin, S. L. Soled, J. Y. Ying, Inorg. Chem., 1996, 35, 4191-4197. Этот материал вводили в реакцию с раствором гептамолибдата аммония при комнатной температуре с получением высококристаллического соединения, структура которого не могла быть определена с помощью традиционных способов ab-initio. Материал проиндицировали, получая кристаллографические параметры, которые были такими же, как у аммониевого молибдата никеля, как сообщается Astier, см., например, M. P. Astier, G. Dji, С. Teichner, J. Ann. Chim. (Paris), 1987, 12, 337, материала, относящегося к семейству оксидов аммония-амина-никеля-молибдена, тесно связанных с материалами Pezerat. Astier не публиковал каких-либо подробных структурных данных по этому семейству материалов, что привело к тому, что для выяснения структуры Ying et al. воспроизвел материал для анализа порошковой дифрактографией с высоким разрешением. Ying et al назвал этот класс материалов «слоистыми молибдатами переходных металлов» или LTM.

Сущность изобретения

Уникальный материал кристаллического оксигидроксида-молибдовольфрамата переходного металла был получен и необязательно сульфидирован с получением активного катализатора гидрообработки. Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла имеет уникальную рентгеновскую дифрактограмму, показывающую сильные пики при 9,65 Å, 7,3 Å и 5,17 Å. Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла имеет формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

Другой вариант осуществления изобретения представляет собой способ получения материала кристаллического оксигидроксида-молибдовольфрамата переходного металла, имеющего формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

причем способ включает формирование реакционной смеси, содержащей NH3, H2O и источники M, W и Mo; регулирование рН реакционной смеси до рН от 8,5 до 10; реакцию смеси при повышенной температуре и автогенном давлении и затем извлечение материала кристаллического оксигидроксида-молибдовольфрамата переходного металла. Реакция может быть проведена при температуре от 70°C до 200°C в течение периода времени от 30 мин до 14 дней.

Еще один вариант осуществления предполагает процесс конверсии, включающий контактирование сырья с катализатором в условиях конверсии с получением по меньшей мере одного продукта, причем катализатор содержит: материал кристаллического оксигидроксида-молибдовольфрамата переходного металла, имеющий формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

Дополнительные признаки и преимущества изобретения будут очевидны из описания изобретения, чертежа и пунктов формулы изобретения, приведенных в настоящем документе.

Краткое описание чертежа

На фиг. 1 представлена порошковая рентгендифрактограмма кристаллического оксигидроксида-молибдовольфрамата переходного металла, полученного с помощью кристаллизации выпариванием, как описано в примерах 1-3.

Подробное описание изобретения

Настоящее изобретение относится к материалу кристаллического оксигидроксида-молибдовольфрамата переходного металла и к способу получения этого материала. Материал имеет обозначение UPM-9. Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла имеет эмпирическую формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y.

Кристаллическая композиция по изобретению характеризуется наличием расширенной сети M-O-M, где M представляет собой металл или комбинацию металлов, перечисленных выше. Структурные элементы повторяются по меньшей мере в двух соседних элементарных ячейках без обрыва связи. Композиция может иметь одномерную сеть, такую как, например, линейные цепи.

Композиция кристаллического оксигидроксида-молибдовольфрамата переходного металла имеет порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A.

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

Композиция кристаллического оксигидроксида-молибдовольфрамата переходного металла по изобретению имеет порошковую рентгендифрактограмму, показанную на фиг. 1.

Композицию кристаллического оксигидроксида-молибдовольфрамата переходного металла получают сольвотермальной кристаллизацией реакционной смеси, обычно получаемой с помощью смешивания реакционноспособных источников молибдена и вольфрама с растворителем, а также с источником аммиака. Конкретные примеры источников молибдена, которые могут быть использованы в данном изобретении, включают без ограничения триоксид молибдена, димолибдат аммония, тиомолибдат аммония и гептамолибдат аммония. Конкретные примеры источников вольфрама, которые могут быть использованы в данном изобретении, включают без ограничения триоксид вольфрама, дивольфрамат аммония, тиовольфрамат аммония и метавольфрамат аммония. Источники других металлов «М» включают без ограничения соответствующие галогениды, ацетаты, нитраты, карбонаты, тиолы и гидроксиды. Конкретные примеры включают хлорид никеля, хлорид кобальта, бромид никеля, бромид кобальта, хлорид магния, нитрат никеля, нитрат кобальта, нитрат железа, нитрат марганца, нитрат цинка, ацетат никеля, ацетат кобальта, ацетат железа, карбонат никеля, карбонат кобальта, карбонат цинка, гидроксид никеля и гидроксид кобальта.

Источник аммиака может включать без ограничения гидроксид аммония, карбонат аммония, бикарбонат аммония, хлорид аммония, фторид аммония или их сочетание.

Как правило, сольвотермальный процесс, используемый для получения композиции по изобретению, включает формирование реакционной смеси, в которой все компоненты, такие как, например, Ni, Mo, NH3 и H2O, смешиваются друг с другом в растворе. В качестве одного конкретного примера можно получить реакционную смесь, которая с учетом молярных соотношений оксидов выражается формулой:

AMOx : BMoOy : CWOz : D(NH3) : H2O

где «M» выбран из группы, состоящей из железа, кобальта, никеля, марганца, меди, цинка и их смесей; «А» представляет собой молярную долю «M» и находится к диапазоне от 0,1 до 3, или от 0,5 до 2, или от 0,75 до 1,25; «х» представляет собой число, которое соответствует валентности «M»; «B» представляет собой молярную долю «Mo» и находится к диапазоне от 0,1 до 3, или от 0,5 до 2, или от 0,75 до 1,25; «у» представляет собой число, которое соответствует валентности «Mо»; «C» представляет собой молярную долю «W» и находится к диапазоне от 0,01 до 1, или от 0,05 до 0,8, или от 0,1 до 0,6; «D» представляет собой молярное соотношение «NH3» и находится к диапазоне от 0,01 до 50, или от 0,1 до 40, или от 1 до 30; молярная доля H2O находится к диапазоне от 10 до 1000, или от 50 до 500, или от 90 до 300.

Величину pH смеси доводят до значения от 7,5 до 11, или от 8,5 до 10. Величину pH смеси можно регулировать с помощью добавления основания, такого как NH4OH, гидроксиды четвертичного аммония, амины и тому подобное.

После образования реакционной смеси реакционная смесь реагирует при температурах, находящихся в диапазоне от 70°С до 230°С, в течение периода времени от 30 мин до примерно 14 дней. В одном варианте осуществления температурный диапазон реакции составляет от 110°С до 120°C, и в другом варианте осуществления температура находится в диапазоне от 150°C до 180°C. В одном варианте осуществления время реакции составляет от 4 до 6 часов, и в другом варианте осуществления время реакции составляет от 7 до 10 дней. Реакцию проводят при атмосферном давлении или в герметичном сосуде при автогенном давлении. В одном варианте осуществления синтез может проводиться в открытом сосуде в условиях кипячения с обратным холодильником. Композиции кристаллического оксигидроксида-молибдовольфрамата переходного металла извлекают в виде продукта реакции. Композиции кристаллического оксигидроксида-молибдовольфрамата переходного металла также характеризуются порошковой рентгендифрактограммой, как показано в таблице А выше и на фиг. 1.

После получения композиция кристаллического оксигидроксида-молибдовольфрамата переходного металла может включать связующее, при этом выбор связующего включает, без ограничения, анионные и катионные глины, такие как гидроталькиты, пироаурит-шегренит-гидроталькиты, монтмориллонит и родственные глины, каолин, сепиолиты, кремнеземы, оксид алюминия, такой как (псевдо)бемит, гиббсит, быстро обожженный гиббсит, эта-оксид алюминия, диоксид циркония, диоксид титана, диоксид титана с покрытием оксида алюминия, диоксид кремния-оксид алюминия, оксид алюминия с покрытием диоксида кремния, диоксиды кремния с покрытием оксида алюминия и их смеси, или другие материалы, обычно известные в качестве связующего частиц, для сохранения целостности частиц. Эти связующие могут применяться с пептизацией или без нее. Связующее может быть добавлено к основной массе композиции кристаллического оксигидроксида-молибдовольфрамата переходного металла, и количество связующего может находиться в диапазоне от 1% мас. до 30% мас. готового катализатора или от 5% мас. до 26% мас. готового катализатора. Связующее может быть химически связано с композицией кристаллического оксигидроксида-молибдовольфрамата переходного металла или может присутствовать в виде физической смеси с композицией кристаллического оксигидроксида-молибдовольфрамата переходного металла.

Композиция кристаллического оксигидроксида-молибдовольфрамата переходного металла с включенным связующим или без него может затем быть сульфидирована или предварительно сульфидирована в различных условиях сульфидирования, включающих контактирование композиции кристаллического оксигидроксида-молибдовольфрамата переходного металла с серосодержащим сырьем, а также использование газовой смеси H2S/Н2. Сульфидирование композиции кристаллического оксигидроксида-молибдовольфрамата переходного металла осуществляется при повышенных температурах, обычно находящихся в диапазоне от 50°C до 600°C, или от 150°С до 500°C, или от 250°С до 450°C.

Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла без носителя согласно изобретению может использоваться в качестве катализатора или носителя катализатора в различных процессах конверсии углеводородов. Процессы гидрообработки являются одним из классов процессов конверсии углеводородов, в которых материал кристаллического оксигидроксида-молибдата переходного металла может использоваться в качестве катализатора. Примеры конкретных процессов гидрообработки хорошо известны в области техники и включают гидроденитрификацию, гидрообессеривание, гидродеметаллирование, гидродесиликацию, гидродеароматизацию, гидроизомеризацию, гидроочистку, гидрофайнинг и гидрокрекинг.

Рабочие условия перечисленных выше процессов гидрообработки обычно включают давления реакции в диапазоне от 2,5 MПa до 17,2 MПa, или в диапазоне от 5,5 до 17,2 MПa, при температурах реакции в диапазоне от 245°C до 440°C, или в диапазоне от 285°C до 425°C. Время, в течение которого сырье контактирует с активным катализатором, соответствующее среднечасовой объемной скорости жидкости (LHSV), должно находиться в диапазоне от 0,1 ч-1 до 10 ч-1 или от 2,0 ч-1 до 8,0 ч-1. В зависимости от используемого сырья могут применяться специфические подмножества этих диапазонов. Например, при гидроочистке типичного сырья для дизельного топлива рабочие условия могут включать от 3,5 MПa до 8,6 MПa, от 315°C до 410°C, от 0,25 ч-1 до 5 ч-1, и от 84 н.м3 H23 до 850 н.м3 H23 подаваемого сырья. Другое сырье может включать бензин, нафту, керосин, газойли, дистилляты и риформат.

Ниже приводятся примеры, позволяющие более полно описать изобретение. Эти примеры приводятся только в иллюстративных целях и не должны рассматриваться как ограничение широкого объема изобретения, определяемого прилагаемой формулой изобретения.

Дифрактограммы, представленные в следующих примерах, были получены с использованием стандартных методов рентгеноструктурного анализа порошков. Источником излучения служила рентгеновская трубка высокой интенсивности, работающая при 45 кВ и 35 мА. Дифрактограмму от медного К-альфа источника излучения получали с помощью соответствующих компьютерных способов. Образцы порошка плотно спрессовывали в пластину и непрерывно сканировали в диапазоне от 3° до 70° (2θ). Межплоскостные расстояния (d) в ангстремах определяли по положению дифракционных пиков, выраженному как θ, где θ представляет собой угол Брэгга, определенный на основе оцифрованных данных. Значения интенсивности определяли из интегральной площади дифракционных пиков, за вычетом фона, причем «I0» означает интенсивность наиболее сильной линии или пика, и «I» является интенсивностью каждого из остальных пиков. Как будет понятно специалистам, при определении параметра 2θ возникают субъективная и приборная ошибка, которые вместе могут давать погрешность ±0,4° для каждого приведенного значения 2θ. Данная погрешность также переходит и в приведенные величины межплоскостных расстояний d, которые вычисляются из величин 2θ. В некоторых из приведенных порошковых рентгендифрактограмм относительные интенсивности d-расстояний указаны с использованием обозначений «оч.сил.», «сил.», «ср.» и «сл.», которые обозначают, соответственно, «очень сильная», «сильная», «средняя» и «слабая». В расчете на 100(I/I0) вышеуказанные обозначения определяются как:

сл.=0-15; ср.=15-60; сил.=60-80 и оч.сил.=80-100.

В некоторых случаях чистота синтезированного продукта может быть оценена по его порошковой рентгендифрактограмме. Так, например, если утверждается, что образец является чистым, то предполагается, что в порошковой рентгендифрактограмме образца отсутствуют линии, относящиеся к кристаллическим примесям, а не то, что в образце отсутствуют аморфные материалы. Как будет понятно специалистам в данной области техники, возможно, что различные слабокристаллические материалы дают пики в одном и том же положении. Если материал состоит из нескольких слабокристаллических материалов, тогда положения пиков, наблюдаемые для каждого отдельного слабокристаллического материала, будут наблюдаться в полученной суммарной дифракционной картине. Точно так же возможно появление нескольких пиков в одинаковых положениях в различных однофазных кристаллических материалах, которые могут быть просто отражением одинакового расстояния в этих материалах, а не означают, что материалы имеют одинаковую структуру.

Пример 1

В 2 л колбе 125,71 г гексагидрата нитрата никеля (0,43 моль Ni), 23,2 г триоксида молибдена (0,16 моль Mo) и 77 г метавольфрамата аммония (0,31 моль W) растворяли в 1200 мл воды. Величину pH раствора увеличивали до 9 с использованием концентрированного NH4OH (300 мл). На этом этапе раствор переносили в 2 л автоклав из нержавеющей стали, нагревали до 180°С в течение 2 ч и выдерживали при 180°С в течение 24 ч, после чего автоклав охлаждали до комнатной температуры, осадок фильтровали, промывали 90 мл воды с 90°С и затем сушили при 100°С. Спектры порошковой рентгеновской дифракции фазы соответствуют спектрам, показанным на фиг. 1.

Пример 2

В 2 л колбе 104,76 г гексагидрата нитрата никеля (0,36 моль Ni), 126,96 г гептамолибдата аммония (0,72 моль Mo) и 53,28 г метавольфрамата аммония (0,21 моль W) растворяли в 1008 мл воды. Величину pH раствора увеличивали до 9 с использованием концентрированного NH4OH (100 мл). На этом этапе раствор переносили в 2 л автоклав из нержавеющей стали, нагревали до 180°С в течение 2 ч и выдерживали при 180°С в течение 24 ч, после чего автоклав охлаждали до комнатной температуры, осадок фильтровали, промывали 90 мл воды с 90°С и затем сушили при 100°С. Спектры порошковой рентгеновской дифракции фазы соответствуют спектрам, показанным на фиг. 1.

Пример 3

В 2 л колбе 104,76 г гексагидрата нитрата никеля (0,36 моль Ni), 95,22 г гептамолибдата аммония (0,54 моль Mo) и 53,28 г метавольфрамата аммония (0,21 моль W) растворяли в 1008 мл воды. Величину pH раствора увеличивали до 9 с использованием концентрированного NH4OH (100 мл). На этом этапе раствор переносили в 2 л автоклав из нержавеющей стали, нагревали до 180°С в течение 2 ч и выдерживали при 150°С в течение 7 дней, после чего автоклав охлаждали до комнатной температуры, осадок фильтровали, промывали 90 мл воды с 90°С и затем сушили при 100°С. Спектры порошковой рентгеновской дифракции фазы соответствуют спектрам, показанным на фиг. 1.

Варианты осуществления

Вариант 1 осуществления представляет собой материал кристаллического оксигидроксида-молибдовольфрамата переходного металла, имеющий формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла по варианту 1 осуществления, где материал кристаллического оксигидроксида-молибдовольфрамата переходного металла присутствует в смеси с по меньшей мере одним связующим, и где смесь содержит до 25% мас. связующего.

Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла по варианту 1 осуществления, где материал кристаллического оксигидроксида-молибдовольфрамата переходного металла присутствует в смеси с по меньшей мере одним связующим, и где смесь содержит до 25% мас. связующего, и где связующее выбрано из группы, состоящей из диоксидов кремния, оксидов алюминия и диоксидов кремния-оксидов алюминия.

Материал кристаллического оксигидроксида-молибдовольфрамата переходного металла по варианту 1 осуществления, где материал кристаллического оксигидроксида-молибдовольфрамата переходного металла является сульфидированным.

Вариант 2 осуществления представляет собой способ получения материала кристаллического оксигидроксида-молибдовольфрамата переходного металла, имеющего формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

причем способ включает: (а) формирование реакционной смеси, содержащей NH3, H2O и источники M, W и Mo; (b) регулирование рН реакционной смеси до рН от 8,5 до 10; (c) реакцию реакционной смеси в диапазоне от 100°С до 220°С в автогенной среде; и (d) извлечение материала кристаллического оксигидроксида-молибдовольфрамата переходного металла.

Способ по варианту 2 осуществления, в котором реакцию проводят при температуре от 100°C до 200°C в течение периода времени от 30 мин до 14 дней.

Способ по варианту 2 осуществления, в котором извлечение может осуществляться с помощью фильтрации или центрифугирования.

Способ по варианту 2 осуществления, дополнительно включающий добавление связующего в извлеченный материал кристаллического оксигидроксида-молибдовольфрамата переходного металла.

Способ по варианту 2 осуществления, дополнительно включающий добавление связующего в извлеченный материал кристаллического оксигидроксида-молибдовольфрамата переходного металла, в котором связующее выбирают из группы, состоящей из оксидов алюминия, диоксидов кремния и оксидов алюминия-диоксидов кремния.

Способ по варианту 2 осуществления, дополнительно включающий сульфидирование извлеченного материала кристаллического оксигидроксида-молибдовольфрамата переходного металла.

Вариант 3 осуществления представляет собой способ конверсии, включающий контактирование сырья с катализатором в условиях конверсии с получением по меньшей мере одного продукта, причем катализатор содержит: материал кристаллического оксигидроксида-молибдовольфрамата переходного металла, имеющий формулу:

(NH4)aM(OH)bMoxWyOz

где «а» находится к диапазоне от 0,1 до 10, или от 0,5 до 5, или от 0,75 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co, Ni, Cu, Zn и их смесей; «b» находится к диапазоне от 0,1 до 2; «х» находится к диапазоне от 0,5 до 1,5 или от 0,75 до 1,5, или от 0,8 до 1,2; «y» находится к диапазоне от 0,01 до 0,4, или от 0,01 до 0,25; где сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей а, M, b, x и y; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d(Å) I/I0%
10,0-9,53 ср.
7,72-7,76 сил.
7,49-7,25 ср.
5,27-5,12 ср.
5,1-5,04 ср.
4,92-4,87 сл.
3,97-3,91 ср.
3,69-3,64 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,09 сл.
3-2,97 ср.
2,76-2,73 ср.

Способ по варианту 3 осуществления, в котором процесс конверсии является гидрообработкой.

Способ по варианту 3 осуществления, в котором процесс конверсии выбран из группы, состоящей из гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродесиликации, гидродеароматизации, гидроизомеризации, гидроочистки, гидрофайнинга и гидрокрекинга.

Способ по варианту 3 осуществления, в котором материал кристаллического оксигидроксида-молибдовольфрамата переходного металла присутствует в смеси с по меньшей мере одним связующим, и где смесь содержит до 25% мас. связующего.

Способ по варианту 3 осуществления, в котором материал кристаллического оксигидроксида-молибдовольфрамата переходного металла является сульфидированным.


КРИСТАЛЛИЧЕСКИЙ ОКСИГИДРОКСИД-МОЛИБДОВОЛЬФРАМАТ ПЕРЕХОДНОГО МЕТАЛЛА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 309.
20.02.2014
№216.012.a147

Система извлечения катализатора конверсии оксигенатов в олефины с башней гашения реакции, использующая низкотемпературную сушильную камеру с псевдоожиженным слоем

Изобретение относится к области катализа. Описан способ извлечения катализатора в процессе конверсии оксигенатов в олефины, при этом способ включает: перепускание потока продуктов процесса превращения оксигенатов в олефины в башню гашения реакции; удаление нижнего потока башни гашения реакции,...
Тип: Изобретение
Номер охранного документа: 0002507002
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a201

Энергосбережение при дистилляции тяжелых углеводородов

Изобретение относится к способу производства отдельного изомера ксилола из исходных сырьевых потоков, содержащих ароматические соединения С8, ароматические соединения С9 и более тяжелые ароматические соединения. Способ включает: (а) процесс дистилляции, включающий использование двух ксилольных...
Тип: Изобретение
Номер охранного документа: 0002507188
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.af7c

Алкилирование для получения моющих средств с использованием катализатора, подвергнутого обмену с редкоземельным элементом

Изобретение относится к способу получения моноалкилированного ароматического соединения, в котором: ароматическое сырье и олефиновое соединение пропускают в реактор алкилирования, при этом реактор алкилирования включает в себя катализатор, содержащий цеолит с мольным отношением диоксида кремния...
Тип: Изобретение
Номер охранного документа: 0002510639
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.afd3

Способ снижения кислотности углеводородов

Изобретение относится к способу снижения кислотности углеводородного сырья, включающему: (a) контактирование углеводородного сырья, содержащего органическую кислоту, с фосфониевой ионной жидкостью, несмешиваемой с углеводородным сырьем, включающей тетрабутилфосфоний метансульфонат, с получением...
Тип: Изобретение
Номер охранного документа: 0002510726
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b0c3

Устройство и способ для смешивания регенерированного катализатора с науглероженным

Изобретение относится к смешиванию регенерированного и науглероженного катализаторов. Изобретение касается устройства для контактирования регенерированного катализатора с углеводородным сырьем, содержащего лифт-реактор, в котором указанное углеводородное сырье контактирует с частицами...
Тип: Изобретение
Номер охранного документа: 0002510966
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b0d8

Способ удаления металлов из вакуумного газойля

Изобретение относится к удалению металлов из вакуумного газойля. Изобретение касается способа, включающего контактирование вакуумного газойля, содержащего металлы, с ионной жидкостью, не смешивающейся с ВГО, с получением смеси, содержащей вакуумный газойль и не смешивающуюся с ВГО ионную...
Тип: Изобретение
Номер охранного документа: 0002510987
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.be2b

Способ изомеризации ксилола и этилбензола с использовнием uzm-35

Изобретение относится к области катализа. Описан способ изомеризации ксилола и этилбензола, катализируемый семейством UZM-35 кристаллических алюмосиликатных цеолитных композиций. Технический результат - увеличение селективности и активности изомеризации ксилолов и этилбензола. 9 з.п. ф-лы, 4...
Тип: Изобретение
Номер охранного документа: 0002514423
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.c033

Способ или система для десорбции из слоя адсорента

Изобретение может быть использовано в химической промышленности. Способ десорбции в слое адсорбента включает пропускание потока десорбента через слой адсорбента, расположенный в зоне удаления, для удаления по меньшей мере одного нитрильного соединения и кислородсодержащего соединения. Поток...
Тип: Изобретение
Номер охранного документа: 0002514952
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c6fb

Способ превращения углеводородов на твердом катализаторе с использованием составных реакторов с движущимся слоем

Изобретение относится к способу превращений углеводородов, в которых используется ряд реакторов с движущимся слоем. Изобретение касается способа жидкофазного превращения углеводородов, в котором устанавливают ряд реакторов с движущимся слоем, пропускают жидкофазный поток углеводородного сырья...
Тип: Изобретение
Номер охранного документа: 0002516698
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8b3

Получение кумола с высокой селективностью

Изобретение относится к вариантам способа получения кумола алкилированием бензола пропиленом. Один из вариантов включает: (a) подачу исходного сырья алкилирования, содержащего бензол и пропилен, в зону (100) реакции алкилирования, содержащую по меньшей мере один слой катализатора алкилирования,...
Тип: Изобретение
Номер охранного документа: 0002517145
Дата охранного документа: 27.05.2014
Показаны записи 1-9 из 9.
27.08.2013
№216.012.638c

Селективный катализатор для конверсии ароматических углеводородов

Изобретение относится к каталитическим материалам. Описан агрегированный материал UZM-14, содержащий глобулярные агрегаты кристаллитов, имеющие каркас морденитного типа с каналами из 12-членных колец, объем мезопор по меньшей мере 0,10 см/г и среднюю длину кристаллитов параллельно направлению...
Тип: Изобретение
Номер охранного документа: 0002491121
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.641f

Способ трансалкилирования

Изобретение относится к способу трансалкилирования сырьевого потока, содержащего C, C, C и C+-ароматические углеводороды для получения потока продукта трансалкилирования с повышенной концентрацией C-ароматических соединений по сравнению с их концентрацией в сырьевом потоке. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002491268
Дата охранного документа: 27.08.2013
26.08.2017
№217.015.ed4b

Самоклеящаяся пленка и способ минимизации или устранения дефектов печати в таких пленках

Настоящее изобретение относится к самоклеящейся полимерной пленке, подходящей для струйной печати. Пленка содержит полимерный слой, имеющий верхнюю поверхность и нижнюю поверхность, адгезионный слой, находящийся на нижней поверхности полимерного слоя. Полимерный слой способен принимать печатные...
Тип: Изобретение
Номер охранного документа: 0002628598
Дата охранного документа: 21.08.2017
29.04.2019
№219.017.404f

Uzm-16: кристаллический алюмосиликатный цеолитный материал

Синтезированы микропористый кристаллический цеолит и его замещенный вариант, обозначаемые UZM-16. Эти цеолиты получают с помощью бензилтриметиламмониевого катиона (BzTMA) или сочетания BzTMA с, по меньшей мере, одним другим четвертичным аммониевым катионом. Эти цеолиты имеют структуру,...
Тип: Изобретение
Номер охранного документа: 0002340552
Дата охранного документа: 10.12.2008
29.04.2019
№219.017.4053

Высококремнистые цеолиты uzm-5hs

Синтезировано семейство кристаллических алюмосиликатных цеолитов, обозначаемых UZM-5HS и являющихся производными UZM-5. Содержание алюминия в UZM-5HS ниже содержания алюминия в исходном UZM-5, что является причиной изменения обменной емкости и кислотности. UZM-5 представлены эмпирической...
Тип: Изобретение
Номер охранного документа: 0002340553
Дата охранного документа: 10.12.2008
29.04.2019
№219.017.4059

Кристаллические алюмосиликатные цеолитные композиции uzm-8 и uzm-8hs и процессы, в которых используются эти композиции

Изобретение относится к области синтеза цеолитов. Получено семейство микропористых алюмосиликатных цеолитов и их замещенных вариантов, которые идентифицированы как UZM-8 и UZM-8HS. Композиции UZM-8 получают с использованием либо только одного, либо большего числа органозамещенных аммониевых...
Тип: Изобретение
Номер охранного документа: 0002340554
Дата охранного документа: 10.12.2008
29.04.2019
№219.017.405a

Кристаллическая алюмосиликатная цеолитная композиция uzm-15

Синтезированы микропористый кристаллический цеолит и замещенные варианты, обозначаемые UZM-15. Эти цеолиты получают с помощью органозамещенного аммониевого катиона в качестве матрицы, в котором, по меньшей мере, одна органическая группа имеет, по меньшей мере, 2 атома углерода. Примером такого...
Тип: Изобретение
Номер охранного документа: 0002340555
Дата охранного документа: 10.12.2008
12.09.2019
№219.017.ca77

Кристаллический бис-аммиачный молибдовольфрамат переходного металла

Изобретение относится к кристаллическому бис-аммиачному молибдовольфрамату переходного металла и к его использованию в качестве катализатора гидрообработки. Заявлен материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющий формулу: (NH)M(OH)MoWO, где «n» находится...
Тип: Изобретение
Номер охранного документа: 0002699797
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca7e

Кристаллический оксигидроксид-молибдат переходного металла

Изобретение относится к кристаллическому оксигидроксид-молибдату переходного металла, катализатору гидрообработки, способу получения кристаллического оксигидроксида-молибдата переходного металла, способу получения катализатора гидрообработки и к способу гидрообработки. Кристаллический...
Тип: Изобретение
Номер охранного документа: 0002699794
Дата охранного документа: 11.09.2019
+ добавить свой РИД