×
12.09.2019
219.017.ca77

Результат интеллектуальной деятельности: КРИСТАЛЛИЧЕСКИЙ БИС-АММИАЧНЫЙ МОЛИБДОВОЛЬФРАМАТ ПЕРЕХОДНОГО МЕТАЛЛА

Вид РИД

Изобретение

№ охранного документа
0002699797
Дата охранного документа
11.09.2019
Аннотация: Изобретение относится к кристаллическому бис-аммиачному молибдовольфрамату переходного металла и к его использованию в качестве катализатора гидрообработки. Заявлен материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющий формулу: (NH)M(OH)MoWO, где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5; «у» находится в диапазоне от 0,01 до 0,25; сумма (x+y) должна быть ≤1,501; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W. Изобретения также относятся к катализатору гидрообработки, содержащему сульфидированный материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, к способу его получения, к способу получения катализатора гидрообработки, содержащего сульфидированный материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, к процессу гидрообработки, включающему контактирование сырья с заявленным катализатором в условиях гидрообработки с получением по меньшей мере одного продукта. Технический результат заключается в получении нового катализатора гидрообработки, позволяющего эффективно производить удаление серосодержащих и азотсодержащих соединений из топливного сырья. 5 н. и 4 з.п. ф-лы, 3 пр.

В данной заявке испрашивается приоритет на основании заявки US №62/267,865 от 15 декабря 2015 года, содержание которой включено в настоящее описание посредством ссылки.

Область техники, к которой относится изобретение

Данное изобретение относится к новому катализатору гидрообработки. В частности, данное изобретение относится к уникальному кристаллическому бис-аммиачному молибдовольфрамату переходного металла и к его использованию в качестве катализатора гидрообработки. Гидрообработка может включать гидроденитрификацию, гидрообессеривание, гидродеметаллирование, гидродесиликацию, гидродеароматизацию, гидроизомеризацию, гидроочистку, гидрофайнинг и гидрокрекинг.

Предпосылки создания изобретения

В целях удовлетворения растущего спроса на нефтепродукты происходит более широкое использование сернистых сырых нефтей, что, в сочетании с более строгим природоохранным законодательством в отношении концентрации азота и серы в топливе, приводит к акцентированию проблем нефтепереработки. Удаление серосодержащих (гидродесульфуризация - HDS) и азотсодержащих (гидроденитрификация - HDN) соединений из топливного сырья является целью стадий гидроочистки при нефтепереработке и достигается с помощью конверсии органического азота и серы в аммиак и сероводород, соответственно.

С конца 1940-х годов использование катализаторов, содержащих никель (Ni) и молибден (Mo) или вольфрам (W), демонстрировало удаление до 80% серы. См., например, V. N. Ipatieff, G. S. Monroe, R. E. Schaad, Division of Petroleum Chemistry, 115th Meeting ACS, San Francisco, 1949. В течение нескольких десятилетий сейчас отмечается интенсивный интерес к разработке материалов для катализа глубокого обессеривания с целью снижения концентрации серы до уровня миллионных долей. Некоторые последние важнейшие достижения сфокусированы на разработке и применении более активных и стабильных катализаторов, предназначающихся для производства сырья для топлива со сверхнизким содержанием серы. В нескольких исследованиях продемонстрировано повышение HDS и HDN активностей за счет исключения носителя, такого как, например, Al2O3. Использование материалов насыпного типа без носителя обеспечивает путь к повышению загрузки активной фазы в реактор, а также к созданию альтернативных химических способов получения таких катализаторов.

Более поздние исследования в этой области были сфокусированы на свойствах сверхглубокого обессеривания, достигаемых с помощью «триметаллического» Ni-Mo/W материала без носителя, как сообщается, например, в US 6,156,695. Регулируемый синтез преимущественно аморфного смешанного оксида металла, состоящего из молибдена, вольфрама и никеля, значительно превосходит традиционные катализаторы гидроочистки. Химическую структуру материала триметаллического смешанного оксида металла уподобляли семейству материалов гидроталькита, ссылаясь на литературные статьи, детально описывающие синтез и характерные признаки слоистого никель-молибдатного материала, утверждающие, что частичное замещение молибдена вольфрамом приводит к образованию преимущественно аморфной фазы, которая после разложения за счет сульфидирования приводит к повышению активности гидроочистки.

Химия этих слоистых гидроталькитоподобных материалов была впервые описана H. Pezerat в Contribution à l'étude des molybdates hydrates de zinc, cobalt et nickel, C. R. Acad. Sci., 261, 5490, который определил последовательность фаз, имеющих идеальные формулы MMoO4⋅H2O, EHM2O-(MoO4)2⋅H2O, и E2-x(H3O)xM2O(MoO4)2, где E может быть NH4+, Na+ или K+, и M может быть Zn2+, Co2+ или Ni2+.

Pezerat обозначил различные фазы, которые он наблюдал, как Фс, Фх или Фy, и определил кристаллические структуры для Фх и Фy, однако из-за сочетания малого размера кристаллита, ограниченных кристаллографических возможностей и сложной природы материала появились сомнения относительно качества оценки структуры материалов. В середине 1970-х годов Clearfield и др. пытались провести более подробный анализ фаз Фх и Фy, см., например, A. Clearfield, M. J. Sims, R. Gopal, Inorg. Chem., 15, 335; A. Clearfield, R. Gopal, C. H. Saldarriaga-Molina, Inorg. Chem., 16, 628. Исследования на монокристалле продукта в результате гидротермического подхода позволили подтвердить структуру Фх, однако попытки синтеза Фy не удались, и вместо этого синтезировали альтернативную фазу, Na-Cu(OH)(MoO4), см., A. Clearfield, A. Moini, P. R. Rudolf, Inorg. Chem., 24, 4606.

Структура Фy не была подтверждена вплоть до 1996 года, когда исследование Ying et al. метода синтеза chimie douce при комнатной температуре, нацеленное на слоистый аммониевый молибдат цинка, привело к метастабильной алюмозамещенной цинкитовой фазе, полученной прокаливанием Zn/Al слоистого двойного гидроксида (Zn4Al2(OH)12CO3⋅zH2O). См., например, D. Levin, S. L. Soled, J. Y. Ying, Inorg. Chem., 1996, 35, 4191-4197. Этот материал вводили в реакцию с раствором гептамолибдата аммония при комнатной температуре с получением высококристаллического соединения, структура которого не могла быть определена с помощью традиционных способов ab-initio. Материал проиндицировали, получая кристаллографические параметры, которые были такими же, как у аммониевого молибдата никеля, как сообщается Astier, см., например, M. P. Astier, G. Dji, С. Teichner, J. Ann. Chim. (Paris), 1987, 12, 337, материала, относящегося к семейству оксидов аммония-амина-никеля-молибдена, тесно связанных с материалами Pezerat. Astier не публиковал каких-либо подробных структурных данных по этому семейству материалов, что привело к тому, что для выяснения структуры Ying et al. воспроизвел материал для анализа порошковой дифрактографией с высоким разрешением. Ying et al назвал этот класс материалов «слоистыми молибдатами переходных металлов» или LTM.

Сущность изобретения

Уникальный материал кристаллического бис-аммиачного молибдовольфрамата переходного металла был получен и необязательно сульфидирован для получения активного катализатора гидрообработки. Материал кристаллического бис-аммиачного молибдовольфрамата металла имеет уникальную порошковую рентгендифрактограмму, показывающую сильные пики при 7,33 Å, 5,06 Å и 3,93 Å. Материал кристаллического бис-аммиачного молибдовольфрамата переходного металла имеет формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

Другой вариант осуществления изобретения представляет собой способ получения материала кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющего формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

причем способ включает формирование реакционной смеси, содержащей NH4OH, H2O и источники M, W и Mo; регулирование рН реакционной смеси до значения рН от 8,5 до 10; и извлечение материала кристаллического бис-аммиачного молибдата металла.

В еще одном варианте осуществления предусмотрен процесс конверсии, включающий контактирование сырья с катализатором в условиях конверсии с получением по меньшей мере одного продукта, причем катализатор содержит: материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющий формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

Дополнительные признаки и преимущества изобретения будут очевидны из описания изобретения, чертежа и пунктов формулы изобретения, приведенных в настоящем документе.

Краткое описание чертежа

На фиг. 1 представлена порошковая рентгендифрактограмма кристаллических бис-аммиачных молибдовольфраматов переходного металла, полученных с помощью кристаллизации выпариванием в соответствии с примерами 1-3.

Подробное описание изобретения

Настоящее изобретение относится к кристаллическому бис-аммиачному молибдовольфрамату переходного металла, к способу получения композиции и к способу, в котором композиция используется в качестве катализатора. Композиции было дано обозначение UPM-6. Данная композиция имеет эмпирическую формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W.

Кристаллическая композиция по изобретению характеризуется наличием расширенной сети M-O-M, где M представляет собой металл или комбинацию металлов, перечисленных выше. Структурные элементы повторяются по меньшей мере в двух соседних элементарных ячейках без обрыва связи. Композиция может иметь одномерную сеть, такую как, например, линейные цепи.

Кристаллический бис-аммиачный молибдовольфрамат переходного металла имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A.

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

Кристаллический бис-аммиачный молибдовольфрамат переходного металла по изобретению имеет порошковую рентгендифрактограмму, показанную на фиг. 1.

Кристаллический бис-аммиачный молибдовольфрамат переходного металла получают сольвотермальной кристаллизацией реакционной смеси, обычно получаемой с помощью смешивания реакционноспособных источников молибдена и вольфрама с подходящим металлом «М» и с растворителем, а также с источником аммиака. Конкретные примеры источников молибдена, которые могут быть использованы в данном изобретении, включают без ограничения триоксид молибдена, димолибдат аммония, тиомолибдат аммония и гептамолибдат аммония. Конкретные примеры источников вольфрама, которые могут быть использованы в данном изобретении, включают без ограничения триоксид вольфрама, дивольфрамат аммония, тиовольфрамат аммония и метавольфрамат аммония. Источники других металлов «М» включают без ограничения соответствующие галогениды, ацетаты, нитраты, карбонаты, тиолы и гидроксиды. Конкретные примеры включают хлорид никеля, хлорид кобальта, бромид никеля, бромид кобальта, хлорид магния, хлорид цинка, нитрат никеля, нитрат кобальта, нитрат железа, нитрат марганца, нитрат цинка, ацетат никеля, ацетат кобальта, ацетат железа, карбонат никеля, карбонат кобальта, гидроксид цинка, гидроксид никеля и гидроксид кобальта.

Источник аммиака может включать без ограничения гидроксид аммония, карбонат аммония, бикарбонат аммония, хлорид аммония, фторид аммония или их сочетание.

Как правило, способ, используемый для получения композиции данного изобретения, включает формирование реакционной смеси, в которой все компоненты, такие как, например, Ni, Mo, W, NH4OH и H2O, смешиваются друг с другом в растворе. В качестве одного конкретного примера можно получить реакционную смесь, которая с учетом молярных соотношений оксидов выражается формулой:

AMOx : BMoOy : CWOz : D(NH3) : H2O

где «M» выбран из группы, состоящей из железа, кобальта, никеля, марганца, меди, цинка и их смесей; «А» представляет собой молярную долю «M» и находится в диапазоне от 0,1 до 3, или от 0,75 до 2, или от 1 до 1,5; «х» представляет собой число, которое соответствует валентности «M»; «В» представляет собой молярную долю «Mo» и находится в диапазоне от 0,1 до 3, или от 0,75 до 2, или от 1 до 1,5; «у» представляет собой число, которое соответствует валентности «Mo»; «С» представляет собой молярную долю «W» и находится в диапазоне от 0,01 до 2, или от 0,05 до 1, или от 0,2 до 0,75; «z» представляет собой число, которое соответствует валентности «W»; «D» представляет собой молярную долю «NH3» и находится в диапазоне от 0,5 до 15, или от 1 до 10, или от 3 до 7; молярная доля H2O находится в диапазоне от 0,1 до 1000, или от 1 до 300, или от 1 до 100.

Необходимо довести pH смеси до значения от 8,5 до 10. Величину pH смеси можно регулировать с помощью добавления основания, такого как NH4OH, гидроксиды четвертичного аммония, амины и тому подобное.

После образования реакционной смеси реакционную смесь подвергают реакции при температурах, находящихся в диапазоне от 60°С до 250°С, в течение периода времени от 30 мин до примерно 14 дней. В одном варианте осуществления температурный диапазон реакции составляет от 70°С до 180°C, а в другом варианте осуществления температурный диапазон составляет от 80°C до 140°C. В одном варианте осуществления время реакции составляет от 1 ч до 48 ч, а в другом варианте осуществления время реакции составляет от 2 ч до 12 ч. Реакцию проводят при атмосферном давлении или в герметичном сосуде при автогенном давлении. В одном варианте осуществления синтез может проводиться в открытом сосуде в условиях кипячения с обратным холодильником. Кристаллический бис-аммиачный молибдовольфрамат переходного металла характеризуется уникальной порошковой рентгендифрактограммой, как показано в таблице А выше и на фиг. 1.

После получения композиция кристаллического бис-аммиачного переходного металла может включать связующее, при этом выбор связующего включает, без ограничения, анионные и катионные глины, такие как гидроталькиты, пироаурит-шегренит-гидроталькиты, монтмориллонит и родственные глины, каолин, сепиолиты, кремнеземы, оксид алюминия, такой как (псевдо)бемит, гиббсит, быстро обожженный гиббсит, эта-оксид алюминия, диоксид циркония, диоксид титана, диоксид титана с покрытием оксида алюминия, диоксид кремния-оксид алюминия, оксид алюминия с покрытием диоксида кремния, диоксиды кремния с покрытием оксида алюминия и их смеси, или другие материалы, обычно известные в качестве связующего частиц, для сохранения целостности частиц. Эти связующие могут применяться с пептизацией или без нее. Связующее может быть добавлено к основной массе композиции кристаллического бис-аммиачного молибдата металла, и количество связующего может находиться в диапазоне от 1% мас. до 30% мас. готового катализатора или от 5% мас. до 26% мас. готового катализатора. Связующее может быть химически связано с кристаллическим бис-аммиачным молибдовольфраматом переходного металла или может присутствовать в виде физической смеси с кристаллическим бис-аммиачным молибдовольфраматом переходного металла.

Кристаллический бис-аммиачный молибдовольфрамат переходного металла с включенным связующим или без него может затем быть необязательно сульфидирован или предварительно сульфидирован в различных условиях сульфидирования, включающих контактирование кристаллического бис-аммиачного молибдовольфрамата переходного металла с серосодержащим сырьем, а также использование газовой смеси H2S/Н2. Сульфидирование кристаллического бис-аммиачного молибдовольфрамата переходного металла осуществляется при повышенных температурах, обычно находящихся в диапазоне от 50°C до 600°C, или от 150°С до 500°C, или от 250°С до 450°C.

Материал кристаллического бис-аммиачного молибдовольфрамата переходного металла без носителя согласно изобретению может использоваться в качестве катализатора или носителя катализатора в различных процессах конверсии углеводородов. Процессы гидрообработки являются одним из классов процессов конверсии углеводородов, в которых материал кристаллического бис-аммиачного молибдата металла используется в качестве катализатора. Примеры конкретных процессов гидрообработки хорошо известны в данной области техники и включают гидроочистку или гидрофайнинг, гидрирование, гидродеароматизацию, гидродеметаллирование, гидродесиликацию, гидрокрекинг, гидроденитрогенирование и гидрообессеривание.

Рабочие условия перечисленных выше процессов гидрообработки обычно включают давления реакции в диапазоне от 2,5 МПа до 17,2 МПа, или в диапазоне от 5,5 до 17,2 МПа, при температурах реакции в диапазоне от 245°C до 440°C, или в диапазоне от 285°C до 425°C. Время, в течение которого сырье контактирует с активным катализатором, соответствующее среднечасовой объемной скорости жидкости (LHSV), должно находиться в диапазоне от 0,1 ч-1 до 10 ч-1 или от 2,0 ч-1 до 8,0 ч-1. В зависимости от используемого сырья могут применяться специфические подмножества этих диапазонов. Например, при гидроочистке типичного сырья для дизельного топлива рабочие условия могут включать от 3,5 МПа до 8,6 МПа, от 315°C до 410°C, от 0,25 ч-1 до 5 ч-1, и от 84 н.м3 H23 до 850 н.м3 H23 подаваемого сырья. Другое сырье может включать бензин, нафту, керосин, газойли, дистилляты и риформат.

Ниже приводятся примеры, позволяющие более полно описать изобретение. Эти примеры приводятся только в иллюстративных целях и не должны рассматриваться как ограничение широкого объема изобретения, определяемого прилагаемой формулой изобретения.

Дифрактограммы, представленные в следующих примерах, были получены с использованием стандартных методов рентгеноструктурного анализа порошков. Источником излучения служила рентгеновская трубка высокой интенсивности, работающая при 45 кВ и 35 мА. Дифрактограмму от медного К-альфа источника излучения получали с помощью соответствующих компьютерных способов. Образцы порошка плотно спрессовывали в пластину и непрерывно сканировали в диапазоне от 3° до 70° (2θ). Межплоскостные расстояния (d) в ангстремах определяли по положению дифракционных пиков, выраженному как θ, где θ представляет собой угол Брэгга, определенный на основе оцифрованных данных. Значения интенсивности определяли из интегральной площади дифракционных пиков, за вычетом фона, причем «I0» означает интенсивность наиболее сильной линии или пика, и «I» является интенсивностью каждого из остальных пиков. Как будет понятно специалистам, при определении параметра 2θ возникают субъективная и приборная ошибка, которые вместе могут давать погрешность ±0,4° для каждого приведенного значения 2θ. Данная погрешность также переходит и в приведенные величины межплоскостных расстояний d, которые вычисляются из величин 2θ. В некоторых из приведенных порошковых рентгендифрактограмм относительные интенсивности d-расстояний указаны с использованием обозначений «оч.сил.», «сил.», «ср.» и «сл.», которые обозначают, соответственно, «очень сильная», «сильная», «средняя» и «слабая». В расчете на 100(I/I0) вышеуказанные обозначения определяются как:

сл.=0-15; ср.=15-60; сил.=60-80 и оч.сил.=80-100.

В некоторых случаях чистота синтезированного продукта может быть оценена по его порошковой рентгендифрактограмме. Так, например, если утверждается, что образец является чистым, то предполагается, что в порошковой рентгендифрактограмме образца отсутствуют линии, относящиеся к кристаллическим примесям, а не то, что в образце отсутствуют аморфные материалы. Как будет понятно специалистам в данной области, возможно, что различные слабокристаллические материалы дают пики в одном и том же положении. Если материал состоит из нескольких слабокристаллических материалов, тогда положения пиков, наблюдаемые для каждого отдельного слабокристаллического материала, будут наблюдаться в полученной суммарной дифракционной картине. Точно так же возможно появление нескольких пиков в одинаковых положениях в различных однофазных кристаллических материалах, которые могут быть просто отражением одинакового расстояния в этих материалах, а не означают, что материалы имеют одинаковую структуру.

Пример 1

В керамической посуде 15,21 г карбоната никеля (0,15 моль Ni), 13,24 г гептамолибдата аммония (0,075 моль Mo) и 18,20 г метавольфрамата аммония (0,075 моль W) добавляли к 25 мл концентрированного раствора гидроксида аммония. Раствор высушивали при 150°C в течение 18 ч с периодическим перемешиванием. Высушенный остаток анализировали с помощью рентгеноструктурного анализа, как описано выше, при этом порошковая рентгендифрактограмма приводится на фиг. 1.

Пример 2

Раствор А. В 3 л колбе 35,61 г карбоната никеля (0,3 моль Ni) и 28,79 г триоксида молибдена (0,2 моль Мо) добавляли к 300 мл воды с образованием суспензии. Раствор В. В 500 мл колбе 13,05 г метавольфрамата аммония (0,05 моль W) добавляли к 90 мл концентрированного раствора NH4OH. Раствор В добавляли к раствору А перед кипячением с обратным холодильником при 100°С. Во время нагревания осадок растворяется с образованием прозрачного темно-синего раствора перед образованием лимонно-зеленого осадка. Через 2 ч наблюдали зеленый осадок, суспендированный в синем растворе с pH 9. Этот осадок охлаждали до комнатной температуры, фильтровали, промывали 90 мл воды с 90°С и затем сушили при 100°С. Рентгеновская дифракция высушенного осадка соответствует порошковой рентгендифрактограмме, показанной на фиг. 1.

Пример 3

Раствор А. В 3 л колбе 35,61 г карбоната никеля (0,3 моль Ni) и 28,79 г триоксида молибдена (0,2 моль Мо) добавляли к 300 мл воды с образованием суспензии. Раствор В. В 500 мл колбе 26,1 г метавольфрамата аммония (0,1 моль W) добавляли к 90 мл концентрированного раствора NH4OH. Раствор В добавляли к раствору А перед кипячением с обратным холодильником при 100°С. Во время нагревания осадок растворяется с образованием прозрачного темно-синего раствора перед образованием лимонно-зеленого осадка. Через 3 ч наблюдали зеленый осадок, суспендированный в синем растворе с pH 9. Этот осадок охлаждали до комнатной температуры, фильтровали, промывали 90 мл воды с 90°С и затем сушили при 100°С. Порошковая рентгендифрактограмма высушенного осадка соответствует порошковой рентгендифрактограмме, показанной на фиг. 1.

Варианты осуществления изобретения

Вариант 1 осуществления представляет собой материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющий формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

Материал кристаллического бис-аммиачного молибдовольфрамата переходного металла по варианту 1 осуществления может присутствовать в смеси с по меньшей мере одним связующим, при этом смесь содержит до 25% мас. связующего.

Материал кристаллического бис-аммиачного молибдовольфрамата переходного металла по варианту 1 осуществления может присутствовать в смеси с по меньшей мере одним связующим, при этом смесь содержит до 25% мас. связующего, при этом связующее выбрано из группы, состоящей из диоксидов кремния, оксидов алюминия и диоксидов кремния-оксидов алюминия.

В формуле материала кристаллического бис-аммиачного молибдовольфрамата переходного металла по варианту 1 осуществления «M» может представлять собой никель или кобальт.

В формуле материала кристаллического бис-аммиачного молибдовольфрамата переходного металла по варианту 1 осуществления «M» может представлять собой никель.

Материал кристаллического бис-аммиачного молибдовольфрамата переходного металла по варианту 1 осуществления может быть сульфидированным.

Вариант 2 осуществления представляет собой способ получения материала кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющего формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

причем способ включает: формирование реакционной смеси, содержащей источники M, W и Mo; регулирование рН реакционной смеси до рН от 8,5 до 10; нагревание раствора до температуры в диапазоне 85-100°С, пока результирующая величина рН не будет находиться в диапазоне 8,5-9,5, и затем извлечение материала кристаллического бис-аммиачного молибдовольфрамата переходного металла.

Способ по варианту 2 осуществления, в котором извлечение может осуществляться с помощью фильтрации или центрифугирования.

Способ по варианту 2 осуществления, дополнительно включающий добавление связующего в извлеченный материал бис-аммиачного молибдовольфрамата переходного металла.

Способ по варианту 2 осуществления, дополнительно включающий добавление связующего в извлеченный материал бис-аммиачного молибдовольфрамата переходного металла, где связующее может быть выбрано из группы, состоящей из оксидов алюминия, диоксидов кремния и оксидов алюминия-диоксидов кремния.

Способ по варианту 2 осуществления, дополнительно включающий сульфидирование извлеченного материала бис-аммиачного молибдовольфрамата переходного металла.

Вариант 3 осуществления представляет собой процесс конверсии, включающий контактирование сырья с катализатором в условиях конверсии с получением по меньшей мере одного продукта, причем катализатор содержит: материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющий формулу:

(NH3)2-nM(OH2)nMoxWyOz

где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5 или от 0,6 до 1,3, или от 0,8 до 1,2; «y» находится в диапазоне от 0,01 до 0,25 или от 0,1 до 0,2; сумма (x+y) должна быть ≤1,501 или ≤1,2; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W; при этом материал имеет уникальную порошковую рентгендифрактограмму, показывающую пики при d-расстояниях, перечисленных в таблице A:

Таблица А

d (Å) I/I0%
7,49-7,28 оч.сил.
5,1-5,05 сил.
4,4-4,257 сл.
3,966-3,915 ср.
3,69-3,645 сил.
3,52-3,48 ср.
3,35-3,32 ср.
3,31-3,29 ср.
3,12-3,097 сл.
3-2,97 ср.
2,76-2,73 ср.

Процесс по варианту 3 осуществления, в котором процесс конверсии является гидрообработкой.

Процесс по варианту 3 осуществления, в котором процесс конверсии выбран из группы, состоящей из гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродеароматизации, гидроизомеризации, гидродесиликации, гидроочистки, гидрофайнинга и гидрокрекинга.

Процесс по варианту 3 осуществления, в котором материал кристаллического бис-аммиачного молибдовольфрамата переходного металла по варианту 1 осуществления присутствует в смеси с по меньшей мере одним связующим, при этом смесь содержит до 25% мас. связующего.

Процесс по варианту 3 осуществления, в котором материал кристаллического бис-аммиачного молибдовольфрамата переходного металла является сульфидированным.


КРИСТАЛЛИЧЕСКИЙ БИС-АММИАЧНЫЙ МОЛИБДОВОЛЬФРАМАТ ПЕРЕХОДНОГО МЕТАЛЛА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 309.
27.04.2013
№216.012.3a66

Способ гидродесульфуризации потока углеводородов

Изобретение относится к способу гидродесульфуризации (10) потоков углеводородов. Способ включает: подачу потока олефиновой нафты (16), содержащей олефин и серу; гидроочистку потока олефиновой нафты в первой зоне десульфуризации (12) при температуре первой реакции, эффективной для превращения...
Тип: Изобретение
Номер охранного документа: 0002480511
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.43b5

Аппараты для контактирования пара и жидкости, содержащие вихревые контактные ступени

Аппараты для контактирования пара и жидкости, например реакторы и дистилляционные колонны, содержащие резервуар с одной или несколькими вихревыми контактными ступенями. Техническим результатом является, то, что одна или несколько ступеней обеспечивают большую зону межфазного контакта для...
Тип: Изобретение
Номер охранного документа: 0002482910
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4964

Регулируемые горелки для нагревателей

Изобретение относится к огневым нагревателям или печам для использования на нефтеперерабатывающих заводах и нефтехимических заводах. Изобретение позволяет обеспечить легкое регулирование источника тепла применительно к каналам с учетом непрогнозируемых потоков дымового газа в топке и условий...
Тип: Изобретение
Номер охранного документа: 0002484368
Дата охранного документа: 10.06.2013
20.07.2013
№216.012.56e8

Способ преобразования метанолового сырья в олефины

Изобретение относится к способу преобразования метанолового сырья в олефины. Способ включает взаимодействие метанолового сырья в первой зоне конверсии с катализатором в условиях реакции, эффективных для образования выходящего потока из первой реакционной зоны, содержащего диметиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002487856
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5d2d

Огневой нагреватель для осуществления процесса конверсии углеводородов

Изобретение относится к огневому нагревателю для осуществления конверсии углеводородов, содержащему радиантную секцию, впускной коллектор, выпускной коллектор, по меньшей мере, одну трубу нагревателя, имеющую впуск и выпуск, при этом впуск сообщается по текучей среде с впускным коллектором, по...
Тип: Изобретение
Номер охранного документа: 0002489474
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f5f

Усовершенствованные контактные ступени для устройств со спутным контактированием

Изобретение относится к усовершенствованным контактным ступеням для осуществления контактирования пара с жидкостью. Изобретение касается контактной ступени (12) устройства для осуществления спутного контактирования пара с жидкостью, содержащей: пару рядов (24) каплеотбойников, разнесенных между...
Тип: Изобретение
Номер охранного документа: 0002490047
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6025

Способ отделения мета-ксилола от ароматических углеводородов и адсорбент для его осуществления

Изобретение относится к способу выделения мета-ксилола из смеси, содержащей, по меньшей мере, один другой C алкилароматический углеводород. Способ включает контактирование в условиях адсорбции смеси с адсорбентом, содержащим натриевый цеолит Y со средним размером кристаллитов 50-700 нанометров....
Тип: Изобретение
Номер охранного документа: 0002490245
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.604a

Блочные координационные сополимеры

Изобретение предлагает кристаллический координационный сополимер, способ его получения и способ применения. При получении проводят сборку из нескольких органических молекул для получения пористых материалов с каркасными структурами, обладающих слоистыми конфигурациями или конфигурациями...
Тип: Изобретение
Номер охранного документа: 0002490282
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6065

Способ деазотирования дизельного топлива

Изобретение относится к деазотированию дизельного топлива. Изобретение касается способа деазотирования дизельного топлива, который включает введение в контакт дизельного топлива, содержащего одно или несколько азотсодержащих соединений, с кислотной ионной жидкостью при массовом соотношении...
Тип: Изобретение
Номер охранного документа: 0002490309
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6068

Установка для проведения конверсии углеводородов, включающая реакционную зону, в которую поступает транспортируемый катализатор

Изобретение относится к установке для проведения конверсии углеводородов, включающей реакционную зону, в которую поступает транспортируемый катализатор. Установка для конверсии углеводородов (400, 500, 600), содержит: a) емкость для регенерации; b) устройство, обеспечивающее прохождение...
Тип: Изобретение
Номер охранного документа: 0002490312
Дата охранного документа: 20.08.2013
Показаны записи 1-9 из 9.
27.08.2013
№216.012.638c

Селективный катализатор для конверсии ароматических углеводородов

Изобретение относится к каталитическим материалам. Описан агрегированный материал UZM-14, содержащий глобулярные агрегаты кристаллитов, имеющие каркас морденитного типа с каналами из 12-членных колец, объем мезопор по меньшей мере 0,10 см/г и среднюю длину кристаллитов параллельно направлению...
Тип: Изобретение
Номер охранного документа: 0002491121
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.641f

Способ трансалкилирования

Изобретение относится к способу трансалкилирования сырьевого потока, содержащего C, C, C и C+-ароматические углеводороды для получения потока продукта трансалкилирования с повышенной концентрацией C-ароматических соединений по сравнению с их концентрацией в сырьевом потоке. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002491268
Дата охранного документа: 27.08.2013
26.08.2017
№217.015.ed4b

Самоклеящаяся пленка и способ минимизации или устранения дефектов печати в таких пленках

Настоящее изобретение относится к самоклеящейся полимерной пленке, подходящей для струйной печати. Пленка содержит полимерный слой, имеющий верхнюю поверхность и нижнюю поверхность, адгезионный слой, находящийся на нижней поверхности полимерного слоя. Полимерный слой способен принимать печатные...
Тип: Изобретение
Номер охранного документа: 0002628598
Дата охранного документа: 21.08.2017
29.04.2019
№219.017.404f

Uzm-16: кристаллический алюмосиликатный цеолитный материал

Синтезированы микропористый кристаллический цеолит и его замещенный вариант, обозначаемые UZM-16. Эти цеолиты получают с помощью бензилтриметиламмониевого катиона (BzTMA) или сочетания BzTMA с, по меньшей мере, одним другим четвертичным аммониевым катионом. Эти цеолиты имеют структуру,...
Тип: Изобретение
Номер охранного документа: 0002340552
Дата охранного документа: 10.12.2008
29.04.2019
№219.017.4053

Высококремнистые цеолиты uzm-5hs

Синтезировано семейство кристаллических алюмосиликатных цеолитов, обозначаемых UZM-5HS и являющихся производными UZM-5. Содержание алюминия в UZM-5HS ниже содержания алюминия в исходном UZM-5, что является причиной изменения обменной емкости и кислотности. UZM-5 представлены эмпирической...
Тип: Изобретение
Номер охранного документа: 0002340553
Дата охранного документа: 10.12.2008
29.04.2019
№219.017.4059

Кристаллические алюмосиликатные цеолитные композиции uzm-8 и uzm-8hs и процессы, в которых используются эти композиции

Изобретение относится к области синтеза цеолитов. Получено семейство микропористых алюмосиликатных цеолитов и их замещенных вариантов, которые идентифицированы как UZM-8 и UZM-8HS. Композиции UZM-8 получают с использованием либо только одного, либо большего числа органозамещенных аммониевых...
Тип: Изобретение
Номер охранного документа: 0002340554
Дата охранного документа: 10.12.2008
29.04.2019
№219.017.405a

Кристаллическая алюмосиликатная цеолитная композиция uzm-15

Синтезированы микропористый кристаллический цеолит и замещенные варианты, обозначаемые UZM-15. Эти цеолиты получают с помощью органозамещенного аммониевого катиона в качестве матрицы, в котором, по меньшей мере, одна органическая группа имеет, по меньшей мере, 2 атома углерода. Примером такого...
Тип: Изобретение
Номер охранного документа: 0002340555
Дата охранного документа: 10.12.2008
02.09.2019
№219.017.c62c

Кристаллический оксигидроксид-молибдовольфрамат переходного металла

Разработан активный катализатор гидрообработки, предназначенный для использования в процессах конверсии углеводородов: гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродесиликации, гидродеароматизации, гидроизомеризации, гидроочистки, гидрофайнинга и гидрокрекинга....
Тип: Изобретение
Номер охранного документа: 0002698819
Дата охранного документа: 30.08.2019
12.09.2019
№219.017.ca7e

Кристаллический оксигидроксид-молибдат переходного металла

Изобретение относится к кристаллическому оксигидроксид-молибдату переходного металла, катализатору гидрообработки, способу получения кристаллического оксигидроксида-молибдата переходного металла, способу получения катализатора гидрообработки и к способу гидрообработки. Кристаллический...
Тип: Изобретение
Номер охранного документа: 0002699794
Дата охранного документа: 11.09.2019
+ добавить свой РИД