×
01.09.2019
219.017.c5e1

Результат интеллектуальной деятельности: СВЧ фотонный кристалл

Вид РИД

Изобретение

Аннотация: Использование: для создания СВЧ фотонного кристалла. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней мере одну n–i–p–i–n диодную структуру в центральном элементе и источник питания, согласно решению металлические элементы выполнены в виде штырей, в количестве не менее пяти, расположенных вдоль продольной оси широкой стенки волновода, при этом центральный штырь гальванически соединен с обеими противоположными стенками волновода, имеет разрыв для размещения диодной n–i–p–i–n структуры, n-области которой соединены с противоположными концами центрального штыря, а p-область соединена с положительным полюсом источника питания, штыри, расположенные справа и слева от центрального, ближайшие к нему, имеют емкостные зазоры у одной из широких стенок волновода и выполнены с возможностью регулировки величины этих зазоров, последующие штыри, расположенные слева и справа от ближайших к центральному, имеют емкостные зазоры меньшей величины у противоположной широкой стенки, при этом диаметр центрального штыря меньше диаметров остальных штырей. Технический результат: обеспечение возможности достижения указанной величины диапазона регулировки мощности при уменьшении продольного размера СВЧ фотонного кристалла и сокращении, даже до одного, количества управляющих элементов в виде полупроводниковых n–i–p–i–n-диодов. 4 ил.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоска (Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Фотонные структуры и их использование для измерения параметров материалов. Известия вузов. Электроника 2008, №5, с.25–32).

Недостатком данного фотонного кристалла является невозможность электрического управления его амплитудно-частотными характеристиками.

Этот недостаток частично устранен в СВЧ-фильтре с регулируемыми положением частотной области пропускания и величиной пропускания в этой области. Фильтр включает отрезок волновода, частотно-селективный элемент и элемент для регулирования затухания. Частотно-селективный элемент выполнен в виде одномерного волноводного 11-слойного фотонного кристалла, представляющего собой чередующиеся слои поликора (ε=9.6) толщиной 1 мм и пенопласта (ε=1.1) толщиной 12 мм, с нарушением периодичности в виде уменьшенной до 5.5 мм, 5 мм и 4.5 мм толщины центрального слоя, в котором элемент для регулирования затухания выполнен в виде p–i–n-диодной структуры, расположенной после фотонного кристалла по направлению распространения электромагнитной волны и подключенной к источнику питания с регулируемым напряжением (см. патент на изобретение РФ №2407114, МПК H01P 1/00).

Недостатком данного СВЧ-фильтра с электрически управляемыми характеристиками является ограниченный диапазон регулировки мощности выходного сигнала на частоте дефектной моды фотонного кристалла в схеме на отражение, не превышающий 25 дБ.

Наиболее близким к заявляемому изобретению является волноводный СВЧ фотонный кристалл, представляющий собой структуру, состоящую из семи периодически расположенных прямоугольных металлических резонансных диафрагм на расстоянии L=20 мм друг от друга в прямоугольном волноводе трехсантиметрового диапазона. Ширина и высота щелей диафрагм фотонного кристалла выбирались равными 20  и 2 мм соответственно. Для эффективного управления резонансными свойствами таких фотонных кристаллов использовалась конструкция с n–i–p–i–n-диодной матрицей, состоящей из четырех диодных элементов, размещенных в центральной диафрагме, выполненной в виде двух прямоугольных щелей, размером 10.5х1.0 мм2 каждая [Усанов Д.А., Никитов С.А., Скрипаль А.В., Мерданов М.К., Евтеев С.Г. Волноводные фотонные кристаллы на резонансных диафрагмах с управляемыми n–i–p–i–n-диодами характеристиками// Радиотехника и электроника. 2018.  № 1. С. 65–71].

Недостатком данного фотонного кристалла является значительный продольный размер и использование сложной конструкции с n–i–p–i–n-диодной матрицей, содержащей значительное (не менее четырех) количество n–i–p–i–n-диодов, для достижения величины диапазона регулировки мощности выходного сигнала на частоте дефектной моды фотонного кристалла в схеме на отражение, превышающей 45 дБ. Уменьшение количества n–i–p–i–n-диодов до одного приводило к уменьшению величины диапазона регулировки мощности выходного сигнала до 20 дБ.

Техническая проблема заключается в разработке конструкции СВЧ фотонного кристалла, обеспечивающего достижение величины диапазона регулировки мощности выходного сигнала на частоте дефектной моды фотонного кристалла в схеме на отражение, превышающей 47 дБ.

Техническим результатом является достижение указанной величины диапазона регулировки мощности при уменьшении продольного размера СВЧ фотонного кристалла и сокращении, даже до одного, количества управляющих элементов в виде полупроводниковых n–i–p–i–n-диодов.

Указанный технический результат достигается тем, что СВЧ фотонный кристалл, выполненный в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней мере, одну n–i–p–i–n диодную структуру в центральном элементе, и источник питания, согласно решению, металлические элементы выполнены в виде штырей, в количестве не менее пяти, расположенных вдоль продольной оси широкой стенки волновода, при этом центральный штырь гальванически соединен с обеими противоположными стенками волновода, имеет разрыв для размещения диодной n–i–p–i–n структуры, n-области которой соединены с противоположными концами центрального штыря, а p-область соединена с положительным полюсом источника питания, штыри, расположенные справа и слева от центрального, ближайшие к нему, имеют емкостные зазоры у одной из широких стенок волновода и выполнены с возможностью регулировки величины этих зазоров, последующие штыри, расположенные слева и справа от ближайших к центральному, имеют емкостные зазоры меньшей величины у противоположной широкой стенки, при этом диаметр центрального штыря меньше диаметров остальных штырей.

Предлагаемое устройство поясняется чертежами:

Фиг.1. СВЧ фотонный кристалл в виде волноводной штыревой системы с переключательным диодом на основе n–i–p–i–n структуры.

Фиг.2. Схема расположения штырей с зазорами.

Фиг.3. Расчетные частотные зависимости коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы.

Фиг.4. Экспериментальные частотные зависимости коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы.

Позициями на чертежах обозначены:

1 – отрезок волновода сечением 23х10 мм2;

2 – положительный полюс источника питания;

3 – n–i–p–i–n структура;

4 – широкие стенки волновода;

5 – штыри;

6 – зазоры;

7 – разрыв величиной 1 мм центрального штыря для размещения n–i–p–i–n структуры;

8 – расчетная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при удельной электропроводности i-слоя n–i–p–i–n-структуры σ=0 См/м (штриховая линия);

9 – расчетная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при удельной электропроводности i-слоя n–i–p–i–n-структуры σ=103 См/м (сплошная линия);

10 – экспериментальная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при отсутствии управляющего тока, протекающего через переключательный диод 2А505А на основе n–i–p–i–n-структуры (штриховая линия);

11 – экспериментальная частотная зависимость коэффициента отражения S11 электрически управляемого волноводного фотонного кристалла на основе штыревой системы при величине управляющего тока, протекающего через переключательный диод 2А505А на основе n–i–p–i–n-структуры, равной 200 мА (сплошная линия).

В качестве СВЧ фотонного кристалла рассматривался волновод трехсантиметрового диапазона с брэгговской структурой, выполненной в виде периодически расположенных металлических штырей. Штыри располагались по центру широкой стенки волновода на равном расстоянии друг от друга. Диаметр центрального штыря был задан равным 1 мм, диаметр остальных – 2 мм. Продольный размер системы из пяти штырей составил 50 мм. Величина зазоров между крайними штырями и одной и той же широкой стенкой волновода выбиралась равной 0.2 мм, величина зазоров между вторым и четвертым штырями и противоположной широкой стенкой волновода выбиралась равной 0.59 мм.

В качестве центрального штыря выбирался штырь, гальванически соединенный с обеими противоположными широкими стенками волновода и имеющий в центре разрыв величиной 1 мм. Для управления характеристиками СВЧ фотонного кристалла выбиралась n–i–p–i–n-структура, которая располагалась в разрыве центрального штыря.

Конструкция СВЧ фотонного кристалл в виде волноводной штыревой системы с n–i–p–i–n-структурой представлена на фиг. 1.

Схема расположения штырей с зазорами представлена на фиг. 2.

На основе численного моделирования с использованием метода конечных элементов в программе ANSYS HFSS исследовались амплитудно-частотные характеристики коэффициентов отражения фотонного кристалла при различной удельной электропроводности i-слоя n–i–p–i–n-структуры. Предполагалось, что при прямом смещении удельная электропроводность данного элемента изменялась в диапазоне от 0 до 103 См/м. Такое изменение величины удельной электропроводности , обусловленное обогащением i-областей инжектированными носителями заряда, соответствует величине протекающего тока в диапазоне от 0 до 200 мА с использованием n–i–p–i–n-структуры типа 2A505.

Как следует из результатов расчета, при достижении удельной электропроводности i-областей n–i–p–i–n-структуры значения, равного 103 См/м, сопротивление n–i–p–i–n-структуры уменьшается до нескольких единиц Ом, что приводит к фактическому «исчезновению» разрыва центрального штыря.

Результаты расчета частотной зависимости коэффициента отражения S11 СВЧ фотонного кристалла представлены на фиг. 3.

Как следует из результатов расчета на АЧХ СВЧ фотонного кристалла в виде периодической структуры со штыревым центральным элементом, замкнутым на обе противоположные широкие стенки волновода, возникает широкая запрещенная зона от 8 ГГц до 12.1 ГГц. Наличие лишь слабого возмущения в запрещенной зоне АЧХ (кривая 9 на фиг. 3) на частоте 10.8 ГГц свидетельствует о незначительности влияния вносимого нарушения в виде центрального сплошного штыря уменьшенного диаметра (1 мм) на распространение СВЧ-волны в созданном СВЧ фотонном кристалле, содержащем цилиндрические штыри равного диаметра (2 мм), расположенные на равном расстоянии друг от друга.

При отсутствии напряжения смещения n–i–p–i–n-структура, являющаяся элементом нарушения фотонного кристалла, при удельной электропроводности i-слоя, равной 0 См/м, совместно с элементами центрального металлического штыря может быть приближенно представлена в виде последовательного R–L–C-контура, где R – сопротивление потерь в сильнолегированных областях, омических контактах и выводах n–i–p–i–n-структуры, С – емкость i-слоя, L– индуктивность элементов центрального металлического штыря.

Как следует из результатов расчета АЧХ (кривая 8 на фиг. 3), в этом режиме на частоте 11,44 ГГц в запрещенной зоне фотонного кристалла возникает ярко выраженная дефектная мода, характеризующаяся коэффициентом отражения равным –33.3 дБ.

Увеличение удельной электропроводности i-слоя n–i–p–i–n-структуры, приводит к увеличению коэффициента отражения на частоте дефектной моды, который достигает величины –0.03 дБ при величине удельной электропроводности i-слоя n–i–p–i–n-структуры, равной 103 См/м.

Пример практической реализации устройства.

Был создан СВЧ фотонный кристалл 3-сантиметрового диапазона длин волн (размеры поперечного сечения волновода 23×10 мм2).

СВЧ фотонный кристалл, выполнен в виде прямоугольного волновода 1 и содержит источник питания 2. В волноводе размещены периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, расположенные вдоль продольной оси широкой стенки волновода 4. Металлические элементы выполнены в виде пяти штырей 5. Центральный штырь гальванически соединен с обеими противоположными стенками волновода 1 и имеет в центре разрыв, с размещенной в нем n–i–p–i–n диодной структурой 3, n-области которой соединены с противоположными концами штыря, а p-область гальванически соединена с положительным полюсом источника питания 2. Штыри, расположенные справа и слева от центрального, ближайшие к центральному, имеют емкостные зазоры равные 0.59 мм, у одной из широких стенок волновода, выполнены с возможностью регулировки зазоров, например, с помощью резьбовой подачи. Последующие штыри, расположенные слева и справа от ближайших к центральному, имеют емкостные зазоры меньшей величины с противоположной широкой стенкой, равные 0.2 мм. Центральный штырь был гальванически соединен с обеими противоположными широкими стенками 4 волновода 1 и имел в центре разрыв величиной 1 мм. Диаметр центрального штыря равен 1 мм, диаметры остальных штырей равны 2 мм. Продольный размер системы из пяти штырей составил 50 мм.

Для управления характеристиками СВЧ фотонного кристалла использовался кремниевый переключательный диод 2А505А на основе n–i–p–i–n-структуры, который располагался в разрыве центрального штыря. p-область n–i–p–i–n-структуры гальванически соединялась через отверстие в узкой стенке волновода с положительным полюсом источника питания.

Частотные зависимости коэффициентов отражения S11 СВЧ фотонного кристалла измерялись с помощью векторного анализатора цепей Agilent Microwave Network Analyzer N5242A PNA-X в диапазоне частот от 8 ГГц до 12.5 ГГц, результаты измерений в диапазоне частот от 10 ГГц до 12.5 ГГц представлены на фиг. 4.

Как следует из результатов эксперимента (кривая 11 на фиг. 4), при увеличении управляющего тока, протекающего через переключательный диод 2А505А, до 200 мА сопротивление i-области переключательного диода 2А505А уменьшается до единиц Ом, что приводит к фактическому «исчезновению» разрыва центрального штыря. На амплитудно-частотной характеристике СВЧ фотонного кристалла в виде периодической структуры со штыревым центральным элементом, замкнутым на обе противоположные широкие стенки волновода, возникает широкая запрещенная зона от 8 ГГц до 12.23 ГГц. При этом в запрещенной зоне АЧХ возникает достаточно слабое возмущение (кривая 11 на фиг. 4) на частоте 10.8 ГГц.

При отсутствии управляющего тока, протекающего через переключательный диод 2А505А, центральный штырь уменьшенного до 1 мм диаметра, в разрыве которого размещен переключательный диод 2А505А, выступает в качестве нарушения периодичности СВЧ фотонного кристалла на штыревых элементах.

В этом случае, как следует из результатов эксперимента, при отсутствии управляющего тока, протекающего через переключательный диод 2А505А, в запрещенной зоне СВЧ фотонного кристалла на частоте 11,315 ГГц возникает ярко выраженная дефектная мода, характеризующаяся коэффициентом отражения, равным –47.1 дБ.

При увеличении управляющего тока, протекающего через переключательный диод 2А505А, происходит монотонное увеличение коэффициента отражения СВЧ фотонного кристалла на частоте дефектной моды, который достигает величины –0.3 дБ, при токе, равном 200 мА.

Сравнение результатов расчета и экспериментальных результатов, полученных при практической реализации устройства, свидетельствует об их хорошем качественном соответствии.

Некоторое количественное несовпадение, выражающееся в небольшом различии частоты дефектной моды и динамического диапазона изменения коэффициента отражения на частоте дефектной моды при вариации уровня инжекции неравновесных носителей заряда в i-области n–i–p–i–n-структуры, может быть связано с ограниченностью модели, описывающей взаимодействие электромагнитного излучения с полупроводниковой n–i–p–i–n-структурой с использованием программы ANSYS HFSS, удельная эффективная электропроводность σef которой определяется как средняя величина удельной электропроводности полупроводниковой структуры s(x) и вычисляется с учетом координатной зависимости распределения неравновесных носителей заряда p(x) в i-области с помощью выражения [Стафеев В.И. ЖТФ. 1958. Т.28. №8. С.1631–1642. Баранов Л.И., Климов Б.Н., Селищев Г.В. Радиотехника и электроника. 1966. Т.11, №8. С. 1441-1446]:

(1).

где μn, μp – подвижность электронов и дырок, n0, p0– равновесная концентрация электронов и дырок в i – области, li – длина i области, b=mn/mp.

Следует отметить, что в случае учета зависимости коэффициентов диффузии электронов и дырок от напряженности электрического поля при высоком уровне инжекции неравновесных носителей заряда в i-области n–i–p–i–n-структуры может быть получена немонотонная зависимость распределения концентрации свободных носителей заряда p(x) вдоль n–i–p–i–n-структуры, то есть наблюдаются, так называемые, пространственные осцилляции плотности заряда в кремниевом p–i–n диоде [Усанов Д.А., Горбатов С.С., Кваско В.Ю., Фадеев А.В., Калямин А.А. Письма в ЖТФ. 2014. Т. 40. Вып. 21. С. 104–110.].

В этом случае удельная эффективная электропроводность n–i–p–i–n-структуры должна рассчитываться с использованием выражения (1) с учетом немонотонной зависимости p(x).

Таким образом, заявляемое изобретение позволяет создать СВЧ фотонный кристалл, динамический диапазон изменения коэффициента отражения которого при изменении управляющего тока, протекающего через единственный переключательный диод 2А505А от 0 до 200 мА достигает 47 дБ, при этом линейный размер фотонного кристалла составил 50 мм.

СВЧ фотонный кристалл, выполненный в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней мере одну n–i–p–i–n диодную структуру в центральном элементе, и включающий источник питания, отличающийся тем, что металлические элементы выполнены в виде по крайней мере пяти штырей, расположенных вдоль продольной оси широкой стенки волновода, центральный штырь гальванически соединен с обеими противоположными стенками волновода и имеет в центре разрыв для размещения в нем n–i–p–i–n диодной структуры, n-области которой соединены с противоположными концами штыря, а p-область соединена с положительным полюсом источника питания, штыри, расположенные справа и слева от центрального, ближайшие к центральному, имеют емкостные зазоры с одной из широких стенок волновода, выполнены с возможностью регулировки зазоров, последующие штыри, расположенные слева и справа от ближайших к центральному имеют емкостные зазоры меньшей величины с противоположной широкой стенкой, при этом диаметр центрального штыря меньше диаметров остальных штырей.
СВЧ фотонный кристалл
СВЧ фотонный кристалл
СВЧ фотонный кристалл
Источник поступления информации: Роспатент

Показаны записи 31-40 из 90.
04.04.2018
№218.016.307e

Способ изготовления биосенсорной структуры

Изобретение относится к технологии изготовления сенсорных структур на основе твердотельного полупроводника и функционального органического покрытия и может быть использовано при создании ферментных биосенсоров на основе полевых транзисторов или структур «электролит-диэлектрик-полупроводник»....
Тип: Изобретение
Номер охранного документа: 0002644979
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3c5f

Способ мониторинга нарушений микрогемодинамики в поджелудочной железе лабораторных крыс

Изобретение относится к медицине, а именно к мониторингу микрогемодинамики в поджелудочной железе в процессе хирургического вмешательства с помощью технологии спекл-контрастной визуализации. Способ содержит этапы, на которых: записывают R серий из Q спекл-изображений исследуемой области в...
Тип: Изобретение
Номер охранного документа: 0002648037
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.4cdd

Способ предпосевной обработки семян

Изобретение относится к сельскохозяйственному производству. Предложен способ предпосевной обработки семян, включающий воздействие на семена электромагнитным излучением и магнитным полем. При этом воздействие осуществляют последовательно электромагнитным излучением на частоте линии спектра...
Тип: Изобретение
Номер охранного документа: 0002652185
Дата охранного документа: 25.04.2018
29.05.2018
№218.016.52a6

Способ селективного лазерного фототермолиза раковых клеток плазмонно-резонансными наночастицами

Изобретение относится к медицине, в частности к онкологии, и может быть использовано для селективного лазерного фототермолиза раковых клеток плазмонно-резонансными наночастицами. Вводят коллоидный раствор золотых наночастиц в кровь. Облучают поверхностно расположенную опухоль резонансным...
Тип: Изобретение
Номер охранного документа: 0002653801
Дата охранного документа: 14.05.2018
29.05.2018
№218.016.575c

Способ лазерной абляции патологической области сердца

Изобретение относится к медицине, в частности к сердечно-сосудистой хирургии, и может быть использовано для абляции области патологического возбуждения сердечной мышцы. Вводят пространственно-управляемый катетер во внутреннюю область правого или левого предсердия или желудочков сердца через...
Тип: Изобретение
Номер охранного документа: 0002654764
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5f69

Способ дистанционного контроля движения поверхности объекта

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля движения поверхности объекта. Осуществляют генерирование электромагнитного СВЧ-сигнала и его излучение. Принимают интерференционный сигнал, являющийся суммой падающего и отраженного...
Тип: Изобретение
Номер охранного документа: 0002656532
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6493

Способ измерения наноперемещений

Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором. Преобразуют лазерное...
Тип: Изобретение
Номер охранного документа: 0002658112
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.64cf

Свч фотонный кристалл

Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения,...
Тип: Изобретение
Номер охранного документа: 0002658113
Дата охранного документа: 19.06.2018
19.07.2018
№218.016.724b

Способ безабразивной шлифовки петрографических шлифов аргиллитов баженовской свиты и подобных пород

Изобретение относится к области проведения петрографических исследований аргиллитов баженовской свиты и подобных пород и может быть использовано при изготовлении шлифов из мягких слабых и/или трещиноватых образцов осадочных горных пород. Способ включает распиловку исходной заготовки, шлифование...
Тип: Изобретение
Номер охранного документа: 0002661527
Дата охранного документа: 17.07.2018
28.07.2018
№218.016.75fc

Способ изготовления петрографических шлифов из нефтенасыщенных пород или асфальтобетонов

Изобретение относится к области проведения петрографических исследований, а именно к технологии изготовления шлифов из образцов, содержащих различные углеводороды, битумы и асфальтены. Cпособ изготовления петрографических шлифов включает распиловку исходной заготовки, шлифование одной из...
Тип: Изобретение
Номер охранного документа: 0002662519
Дата охранного документа: 26.07.2018
Показаны записи 31-40 из 53.
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.028e

Преобразователь частоты

Изобретение относится к устройствам для переноса модулированного сигнала с одной несущей на другую частоту и может быть использовано в приемопередающей аппаратуре, в том числе в радиолокационных станциях. Техническим результатом заявляемого изобретения является обеспечение одновременного...
Тип: Изобретение
Номер охранного документа: 0002630168
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
10.05.2018
№218.016.40ce

Способ повышения октанового числа

Изобретение относится к способу получения увеличения октанового числа бензина на 2,5-3 пункта, заключающемуся в пропускании бензина через пористую основу. Способ характеризуется тем, что данная основа содержит в себе адсорбирующий материал из многослойных углеродных нанотрубок, при этом для...
Тип: Изобретение
Номер охранного документа: 0002648985
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4cdd

Способ предпосевной обработки семян

Изобретение относится к сельскохозяйственному производству. Предложен способ предпосевной обработки семян, включающий воздействие на семена электромагнитным излучением и магнитным полем. При этом воздействие осуществляют последовательно электромагнитным излучением на частоте линии спектра...
Тип: Изобретение
Номер охранного документа: 0002652185
Дата охранного документа: 25.04.2018
09.06.2018
№218.016.5f69

Способ дистанционного контроля движения поверхности объекта

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля движения поверхности объекта. Осуществляют генерирование электромагнитного СВЧ-сигнала и его излучение. Принимают интерференционный сигнал, являющийся суммой падающего и отраженного...
Тип: Изобретение
Номер охранного документа: 0002656532
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6493

Способ измерения наноперемещений

Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором. Преобразуют лазерное...
Тип: Изобретение
Номер охранного документа: 0002658112
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.64cf

Свч фотонный кристалл

Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения,...
Тип: Изобретение
Номер охранного документа: 0002658113
Дата охранного документа: 19.06.2018
16.10.2018
№218.016.92a9

Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние между центром зрачка и...
Тип: Изобретение
Номер охранного документа: 0002669734
Дата охранного документа: 15.10.2018
+ добавить свой РИД