×
01.09.2019
219.017.c5a3

Результат интеллектуальной деятельности: СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике, в частности к наземным испытаниям космических систем. Способ испытания системы терморегулирования космического аппарата включает следующие действия. Заполнение трактов системы жидким теплоносителем. Отстыковка компенсационного устройства. Соединение жидкостного контура с жидкостным контуром модуля служебных систем со штатным компенсатором объема. Причем из жидкостной полости компенсатора объема слита доза теплоносителя. При этом из жидкой полости компенсационного устройства при заправке сливают дозу теплоносителя, определяемую по заданному соотношению, учитывающему объем компенсационного устройства и максимальное объемное расширение теплоносителя в жидкостных трактах. Достигается повышение надежности. 8 ил.

Изобретение относится к космической технике, в частности к способам наземных испытаний систем терморегулирования (СТР) телекоммуникационных спутников.

В настоящее время телекоммуникационные спутники изготавливают состоящими из двух модулей: модуля полезной нагрузки (МПН) и модуля служебных систем (МСС), которые после предварительных автономных наземных испытаний их, в том числе их жидкостных контуров СТР, заправленных жидким теплоносителем, например, ЛЗ-ТК-2, объединяют в одно целое и проходят дальнейшие испытания при полностью собранном КА.

Известен способ испытаний СТР таких КА, например, согласно патенту Российской Федерации (РФ) №2132806 [1], по которому (см. фиг. 1-5, где 1 - СТР КА; 2 - жидкостный контур МПН; 3 - жидкостный контур МСС; 4, 5, 6, 8, 9 - гидравлические разъемы; 7 - компенсационное устройство; 10 - компенсатор объема) в процессе стыковки модулей КА (жидкостные контуры которых заправлены жидким теплоносителем) осуществляют отстыковку компенсационного устройства 7 (содержит жидкостную полость и газовую полость, заправленную сжатым газом допустимого давления, например, 1,4-1,5 кгс/см2) от жидкостного контура МПН 2 и в течение промежуточного времени, например, не более 10 минут, соединяют его по гидравлическим разъемам 4, 5, 8, 9 с жидкостным контуром МСС 3, имеющим в своем составе штатный компенсатор объема 10 (из жидкостной полости которого слита требуемая доза теплоносителя, а газовая полость заправлена двухфазным рабочем телом, например, фреоном 141 в, и давление в ней ниже атмосферного).

На фиг. 1 приведено состояние МПН и МСС до стыковки их гидравлических разъемов 4 и 8, 5 и 9: из жидкостной полости компенсатора объема 10 слита доза теплоносителя исходя, что максимальная средняя температура теплоносителя в жидкостном контуре СТР (МПН+МСС) в условиях эксплуатации не превышает 55°С, а из жидкостной полости компенсационного устройства 7, присоединенного к жидкостному контуру МПН, при его автономной заправке слита доза теплоносителя исходя, что максимальная средняя температура теплоносителя в МПН до стыковки с МСС не превышает 35°С.

На фиг. 2 изображены жидкостные контуры 2 и 3 МПН и МСС после штатной отстыковки гидравлических разъемов 5 и 6 (перед стыковкой гидравлических разъемов 4 и 8, 5 и 9).

На фиг. 3 приведено состояние компенсационного устройства 7, МПН и МСС после штатной (без ошибки оператора) стыковки гидравлических разъемов 4 и 8, 5 и 9.

На фиг. 4 изображена схема стыковке МПН и МСС по разъемам гидравлическим 4 и 8 до отстыковки компенсационного устройства 7 от жидкостного контура 2 МПН (ошибка оператора: часть теплоносителя из него перетекла в жидкостную полость компенсатора объема 10 и его сильфон сжался до упора).

На фиг. 5 приведено состояние МПН и МСС после стыковки гидравлических разъемов 4 и 8, 5 и 9 - в этом состоянии отсутствует возможность компенсации температурного изменения объема теплоносителя в жидкостных контурах МПН+МСС.

После этого проводят испытания собранного КА, в том числе собранную СТР.

Анализ, проведенный авторами данных испытаний СТР КА, показал, что известный способ обладает существенными недостатками, а именно: в процессе испытаний обеспечивается недостаточно высокая надежность работоспособности жидкостного контура СТР, обусловленная следующими причинами.

В случае, если оператор допустит ошибку (см. фиг. 4 и 5): соединит гидравлические разъемы 4 и 8, затем от разъема гидравлического 5 отстыкует гидравлический разъем 6, и после этого состыкует гидравлические разъемы 5 и 9. В этом случае после стыковки гидравлических разъемов 4 и 8 имеющийся запас теплоносителя из жидкостной полости компенсационного устройства 7 потечет в жидкостный тракт СТР и сильфон компенсатора объема сожмется до упора, т.к. давление в газовой полости бортового компенсатора объема 10 ниже атмосферного (0,65-0,85 кгс/см2) при температуре в цехе (24±3)°С), а в газовой полости компенсационного устройства 7, пристыкованного к модулю полезной нагрузки, давление выше атмосферного: 1,05-1,1 кгс/см2 (начальное абсолютное давление 1,4-1,5 кгс/см2 по технологии изготовления для обеспечения полноты заполнения жидкостного контура МПН).

После того, как будут состыкованы гидравлические разъемы 5 и 9, в жидкостном тракте в случае повышения температуры окружающего воздуха установится повышенное (недопустимое) давление теплоносителя и жидкостный тракт СТР может разгерметизироваться.

Таким образом, известный способ [1] обеспечивает недостаточно высокую надежность работоспособности жидкостного тракта СТР в процессе наземных испытаний КА.

Целью предлагаемого технического решения является устранение вышеуказанного существенного недостатка.

Поставленная задача достигается тем, что в способе испытаний системы терморегулирования космического аппарата, жидкостные тракты которой заправлены жидким теплоносителем, включающем отстыковку компенсационного устройства, содержащего заправленную теплоносителем жидкостную полость и газовую полость, заправленную сжатым газом допустимого давления, от жидкостного контура модуля полезной нагрузки и в течение расчетного промежутка времени, например, не более 10 минут, соединение его по гидравлическим разъемам с жидкостным контуром модуля служебных систем, имеющем в своем составе штатный компенсатор объема, из жидкостной полости которого слита требуемая доза теплоносителя, исходя из максимально возможной средней температуры теплоносителя в жидкостных трактах, а газовая полость заправлена двухфазным рабочим телом, например, фреоном 141в, и проведение испытаний, причем предварительно при автономной заправке жидким теплоносителем компенсационного устройства, подключаемого к заполненному теплоносителем жидкостному контуру полезной нагрузки, из жидкостной полости его сливают дозу теплоносителя, удовлетворяющую следующему условию:

где ΔVсл.д. КУ МПН - требуемая доза теплоносителя, сливаемая из жидкостной полости компенсационного устройства, подключаемого к жидкостному тракту полезной нагрузки, при автономной заправке его перед использованием, л;

Vкомпенсир. КУ МПН - максимально возможное изменение объема жидкостной полости компенсационного устройства, подключаемого к жидкостному тракту модуля полезной нагрузки, при изменении хода сильфона его от положения «Сильфон сжат полностью» до положения «Сильфон растянут полностью», л (например, 4,0 л);

Vмакс. СТР - максимально возможный объем теплоносителя в жидкостных трактах СТР КА в условиях эксплуатации, например, 30 л (модули полезной нагрузки и служебных систем состыкованы между собой), л;

β - коэффициент температурного изменения объема теплоносителя, 1/°С (например, 0,00123 1/°С);

t макс. экс. КА, tмакс.наз. исп. - максимально возможные средние температуры теплоносителя в жидкостных трактах СТР в условиях эксплуатации КА и при наземных испытаниях после стыковки модуля полезной нагрузки с модулем служебных систем, °С (например, t макс. экс. КА = 55°С; tмакс.наз. исп. = 35°С);

|δV| - погрешность слива дозы теплоносителя из компенсатора объема, л (например, +0,2 л), что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами изобретения.

В результате проведенного авторами анализа известной патентной и научно-технической литературы, предложенное сочетание существенных признаков заявляемого технического решения в известных источниках не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявленном способе испытаний СТР КА.

На фиг. 6-8 изображены принципиальные схемы реализации предлагаемого технического решения.

На фиг. 6 приведено состояние МПН и МСС до стыковки их гидравлических разъемов 4 и 8, 5 и 9: из жидкостной полости компенсатора объема 10 слита доза теплоносителя исходя, что максимальная средняя температура теплоносителя в жидкостном контуре СТР (МПН+МСС) в условиях эксплуатации не превышает 55°С, а из жидкостной полости компенсационного устройства 7, присоединенного к жидкостному контуру МПН, при его автономной заправке слита доза теплоносителя, удовлетворяющая установленному авторами условию (1) (см. лист 4).

На фиг. 7 изображены жидкостные контуры 2 и 3 МПН и МСС, когда присоединили гидравлические разъемы 4 и 8, в то время как гидравлические разъемы 5 и 6 не расстыкованы: из-за этого имеющийся запас теплоносителя из жидкостной полости компенсационного устройства 7 перетек в жидкостную полость компенсатора объема 10 - при этом сильфон компенсационного устройства полностью растянулся (сел на упор), а сильфон компенсатора 10 сжался, но до полного сжатия сильфона в компенсаторе объема 10 остался объем теплоносителя, достаточный для компенсации температурного изменения объема теплоносителя в жидкостных контурах 2 и 3 (МПН+МСС) при наземных испытаниях.

На фиг. 8 представлено состояние компенсационного устройства 7, жидкостных контуров 2 и 3 (МПН+МСС) в процессе наземных испытаний СТР и КА. Из фиг. 6-8 видно, что, в случае ошибки оператора, в результате того, что, из жидкостной полости компенсационного устройства 7, подключенного к модулю полезной нагрузки, при автономной его заправке слита доза теплоносителя, удовлетворяющая установленному авторами следующему условию:

где ΔVсл.д. КУ МПН - требуемая доза теплоносителя, сливаемая из жидкостной полости компенсационного устройства, подключаемого к жидкостному тракту полезной нагрузки, при автономной заправке его перед использованием, л;

Vкомпенсир. КУ МПН - максимально возможное изменение объема жидкостной полости компенсационного устройства, подключаемого к жидкостному тракту модуля полезной нагрузки, при изменении хода сильфона его от положения «Сильфон сжат полностью» до положения «Сильфон растянут полностью», л (например, 4,0 л);

Vмакс. СТР - максимально возможный объем теплоносителя в жидкостных трактах СТР КА в условиях эксплуатации, например, 30 л (модули полезной нагрузки и служебных систем состыкованы между собой), л;

β - коэффициент температурного изменения объема теплоносителя, 1/°С (например 0,00123 1/°С);

t макс. экс. КА, tмакс.наз. исп. - максимально возможные средние температуры теплоносителя в жидкостных трактах СТР в условиях эксплуатации КА и при наземных испытаниях после стыковки модуля полезной нагрузки с модулем служебных систем, °С (например, t макс. экс. КА =55°С; tмакс.наз. исп. =35°С);

|δV| - погрешность слива дозы теплоносителя из компенсатора объема, л (например, +0,2 л),

из компенсационного устройства 7 может выдавливаться объем теплоносителя, недостаточный для полного сжатия сильфона бортового компенсатора объема 10, и в жидкостном тракте СТР при изменении температуры теплоносителя и температуры окружающего воздуха не может повыситься давление теплоносителя выше допустимого и исключается повреждение жидкостного тракта СТР.

Таким образом, при испытаниях КА обеспечивается с высокой надежностью работоспособность жидкостного тракта СТР, следовательно, тем самым достигается цель изобретения.


СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 193.
27.08.2015
№216.013.7588

Устройство телеметрического контроля контактных датчиков механических устройств батареи солнечной

Изобретение относится к системам контроля работы механических узлов солнечной батареи (СБ) космического аппарата (КА) в условиях эксплуатации. Устройство содержит цепочку из N (напр., N=5) последовательно соединенных контактных датчиков (КД) (2,…, 2), к которым параллельно подключены резисторы...
Тип: Изобретение
Номер охранного документа: 0002561663
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.789e

Механический рычажный замок (варианты)

Изобретение относится к космической технике и может быть использовано для соединения и разъединения частей космического аппарата. Механический рычажный замок содержит кронштейн, закрепленный на первом отделяемом элементе, коромысло с возможностью поворота на оси и зафиксированное по...
Тип: Изобретение
Номер охранного документа: 0002562467
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79b8

Интерфейсный модуль контроля температур

Изобретение относится к области измерительной техники и может найти применение в многоканальных устройствах для измерения температур с помощью термопреобразователей сопротивления. Интерфейсный модуль контроля температур содержит термопреобразователь сопротивления 1, опорный резистор 2 и...
Тип: Изобретение
Номер охранного документа: 0002562749
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a77

Способ цифрового измерения временных интервалов

Изобретение относится к измерительной технике и может быть использовано при различных физических исследованиях. Способ основан на формировании внутри измерительного временного интервала, равного целому числу периодов исследуемого сигнала, вспомогательных временных интервалов, которые заполняют...
Тип: Изобретение
Номер охранного документа: 0002562940
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7b71

Способ изготовления рефлектора

Изобретение относится к радиотехнике и предназначено для изготовления прецизионных рефлекторов из полимерных композиционных материалов для антенн космических аппаратов. Технический результат - повышение радиотехнических свойств и точности рабочей поверхности рефлектора. Для этого рефлектор...
Тип: Изобретение
Номер охранного документа: 0002563198
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e48

Контрольно-проверочная аппаратура космического аппарата

Изобретение относится к наземным электрическим испытаниям космических аппаратов (КА) в процессе производства КА на заводе-изготовителе, а также при их предстартовых испытаниях. Согласно изобретению в контрольно-проверочную аппаратуру КА дополнительно введены измерители мощности и частоты, а...
Тип: Изобретение
Номер охранного документа: 0002563925
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8137

Устройство металлизации подвижных элементов конструкции

Изобретение относится к устройству металлизации подвижных элементов конструкции трансформируемых механических систем космических летательных аппаратов и предназначено для защиты приборов и кабельных систем трансформируемых механических систем космических летательных аппаратов от влияния зарядов...
Тип: Изобретение
Номер охранного документа: 0002564676
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.830a

Способ тепловакуумных испытаний космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации....
Тип: Изобретение
Номер охранного документа: 0002565149
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8420

Кронштейн

Металлический кронштейн (1) состоит из двух концевых участков с пазами и имеет Г-образный профиль с продольными и поперечными пазами (2) различной толщины по всей его длине. Кронштейн закреплен с помощью болтового соединения (6) на двух противоположных элементах сложной конструкции, например...
Тип: Изобретение
Номер охранного документа: 0002565427
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84ea

Способ изготовления космического аппарата

Способ изготовления космического аппарата относится к космической технике. Способ заключается в том, что производят сборку космического аппарата, проводят электрические испытания на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания определенным образом....
Тип: Изобретение
Номер охранного документа: 0002565629
Дата охранного документа: 20.10.2015
Показаны записи 11-20 из 46.
20.04.2014
№216.012.b9ed

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР), главным образом мощных геостационарных телекоммуникационных спутников с длительным сроком эксплуатации. Контур СТР с двухфазным теплоносителем (аммиаком) содержит гидронасос, коллекторы приборных и радиаторных панелей, аккумулятор. В...
Тип: Изобретение
Номер охранного документа: 0002513325
Дата охранного документа: 20.04.2014
10.08.2014
№216.012.e8aa

Способ компоновки космического аппарата

Изобретение относится к космической технике, а именно к компоновке космических аппаратов. Ёмкость изготавливают с тремя отверстиями для отвода пара, основное отверстие выполняют с центром, через который проходит центральная ось емкости, параллельная продольной оси спутника, направленная в...
Тип: Изобретение
Номер охранного документа: 0002525355
Дата охранного документа: 10.08.2014
10.01.2015
№216.013.1ce8

Способ изготовления системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) мощных телекоммуникационных спутников, содержащим многочисленные (до 10) вертикально расположенные последовательно соединенные длинноразмерные (~3-6 м) коллекторы. Согласно изобретению, жидкостный контур СТР для наземных испытаний...
Тип: Изобретение
Номер охранного документа: 0002538828
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.279c

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР содержит два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, которые размещены рядом друг с другом в сотовых панелях...
Тип: Изобретение
Номер охранного документа: 0002541597
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.279d

Способ компоновки космического аппарата

Изобретение относится к тепловому проектированию преимущественно геостационарных телекоммуникационных спутников с тепловой нагрузкой порядка 4,5-5,5 кВт. Спутник выполняют из двух модулей: модуля полезной нагрузки (ПН) и модуля служебных систем (СС). Приборы модуля СС и часть приборов модуля...
Тип: Изобретение
Номер охранного документа: 0002541598
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.27ab

Способ эксплуатации имитатора системы терморегулирования космического аппарата

Изобретение относится преимущественно к наземным испытаниям и отработке системы терморегулирования (СТР) космического аппарата. Согласно изобретению, заблаговременно определяют недостающее количество теплоносителя в системе, состоящей из имитатора СТР и модуля полезной нагрузки (ПН). Для этого...
Тип: Изобретение
Номер охранного документа: 0002541612
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c41

Способ компоновки космического аппарата

Изобретение относится космической технике и может быть использовано в компоновке космического аппарата (КА). Устанавливают на внутренних поверхностях трехслойных сотовых панелей с встроенными тепловыми трубами и сдублированными циркуляционными коллекторами с жидким теплоносителем приборы...
Тип: Изобретение
Номер охранного документа: 0002542797
Дата охранного документа: 27.02.2015
27.09.2015
№216.013.7fb1

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР таких КА содержит одинаковые дублированные жидкостные контуры теплоносителя. Контуры включают в себя рядом расположенные жидкостные тракты и снабжены...
Тип: Изобретение
Номер охранного документа: 0002564286
Дата охранного документа: 27.09.2015
10.12.2015
№216.013.95e9

Приборный отсек космического аппарата

Изобретение относится к оборудованию космических аппаратов (КА), например, телекоммуникационных спутников. Приборный отсек (ПО) КА содержит электрогерметичный корпус, выполненный из сотопанелей с вентиляционными отверстиями (ВО), внутри которого преимущественно установлены приборы полезной...
Тип: Изобретение
Номер охранного документа: 0002569997
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c23d

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к бортовому оборудованию, преимущественно телекоммуникационных спутников. Способ включает изготовление коллекторов (К) и соединительных трубопроводов (СТ) из трубы специального профиля (с двумя полками). Жидкостные тракты К и СТ промывают органическим теплоносителем, затем...
Тип: Изобретение
Номер охранного документа: 0002574104
Дата охранного документа: 10.02.2016
+ добавить свой РИД