×
01.09.2019
219.017.c529

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО КВАНТОВОГО ВЫХОДА ЛЮМИНЕСЦЕНЦИИ

Вид РИД

Изобретение

Аннотация: Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический элемент и систему регистрации, при этом устройство дополнительно содержит отрезок одномодового оптического волновода, расположенного между источником света и фотометрическим элементом, а фотометрический элемент выполнен в виде отрезка микроструктурного оптического волокна с полостью для исследуемого вещества, при этом фотонная разрешённая зона волокна совпадает с положением спектральных полос люминесценции исследуемого вещества и источника света. Технический результат: упрощение и улучшение качества процедуры проведения определения абсолютного квантового выхода люминесценции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области техники спектральных измерений и может быть использовано для определения абсолютного квантового выхода люминесценции для исследовательских и практических целей.

Существует два основных принципа измерения квантового выхода: абсолютный, фактически использующий определение квантового выхода как отношения числа излученных и поглощенных фотонов, и относительный, в котором исследуемый образец сравнивается с известным стандартом.

Измерение абсолютного квантового выхода в основном проводится в настоящее время с использованием различных типов интегрирующих (фотометрических) сфер, в которые помещается образец и к которым подводят оптические тракты, идущие к источнику возбуждения и к детектору, при этом производят измерения интенсивности излучения от источников с произвольной индикатрисой. В спектроскопии чаще всего оно используется для измерения коэффициентов отражения диффузно отражающих образцов. Интегрирующая сфера обеспечивает попадание всего отраженного и излученного света на детектор. В одинаковых условиях проводится измерение спектра люминесценции исследуемого образца, спектра люминесценции пустой кюветы, спектра рэлеевского рассеяния образца и спектра рэлеевского рассеяния пустой кюветы.

В настоящее время разработаны конструкции интегрирующих сфер, позволяющие проводить измерения в самом широком спектральном диапазоне и при различных мощностях излучения.

Известна, в частности, интегрирующая сфера для инфракрасной области спектра (см. патент РФ 2251667 по кл. МПК G01J1/04, опуб. 10.05.2005), содержащая волнообразную диффузно отражающую оболочку с покрытием из металла, при этом интегрирующая сфера выполнена из двух соединяемых полусфер, на внутренней поверхности каждой полусферы размещено волнообразное покрытие из стеклоткани с плотной структурой нитей основы и утка, поперечные размеры которых соизмеримы с длиной волны в дальней ИК-области спектра 500-1000 мкм, а поперечные размеры волокон, из которых скручены нити, соизмеримы с длиной волны в ближней ИК-области спектра 1,0-15,0 мкм.

Однако использование интегрирующих сфер имеет определённые ограничения, связанные, в частности, со сложностью изготовления, высокой стоимостью и невозможностью миниатюризации для использования в перспективных малогабаритных устройствах.

Известен также способ определения абсолютного квантового выхода люминесценции и устройство для его реализации (авторское свидетельство СССР № 1695189 по кл. МПК G01N21/64, опуб. 30.11.1991). Способ включает облучение исследуемого образца пучком монохроматического излучения с заданными энергетическими характеристиками, измерение энергетических характеристик излучения люминесценции и определение абсолютного квантового выхода по соотношению между характеристиками возбуждающего излучения и характеристиками излучения люминесценции. Устройство содержит источник когерентного излучения, коллиматор, выполненный в виде соосно-конфокально расположенных линз с диафрагмой, размещённой в фокальной плоскости обеих линз, светоделительную пластинку, устройство крепления образца, фильтр пространственных частот, образованный линзами и диафрагмой, два фотоприёмника и устройство регистрации и обработки сигналов.

Однако данное устройство характеризуется сложностью изготовления, высокой стоимостью и невозможностью использования в полностью волоконных оптических установках и приборах.

Наиболее близким к заявляемому устройству, выбранным в качестве прототипа, является устройство для определения квантового выхода при резонансном возбуждении люминесценции (А.с. СССР №480002 по кл. МПК G01N21/52, опуб. 05.08.1975), содержащее источник света, входное и выходное окна, фотометрическую сферу, внутри которой размещены образец и оптико-механический узел, и фотоприемник. Определение абсолютного квантового выхода люминесценции проводят с учётом отношения чувствительности фотоприемника к возбуждающему потоку и потоку люминесценции, коэффициента зеркального отражения образца в области резонансного перехода и эффективного коэффициента диффузного отражения оптико-механического узла.

Однако данному устройству также присущие общие для интегрирующих сфер недостатки, в частности, значительные затраты времени на подготовку и проведение определений и невозможность миниатюризации для использования в перспективных малогабаритных оптических устройствах.

Технической проблемой заявляемого изобретения является обеспечение возможности миниатюризации приборов и оборудования для определения абсолютного квантового выхода люминесценции.

Технический результат заявляемого изобретения заключается в упрощении и улучшении качества процедуры проведения определения абсолютного квантового выхода люминесценции за счёт одноразового использования микроструктурного оптического волокна.

Указанный технический результат достигается тем, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества, содержащее расположенные на одной оптической оси источник света, фотометрический элемент и систему регистрации, согласно изобретению, дополнительно содержит отрезок одномодового оптического волновода, расположенного между источником света и фотометрическим элементом, а фотометрический элемент выполнен в виде отрезка микроструктурного оптического волокна с полостью для исследуемого вещества, при этом фотонная разрешённая зона волокна совпадает с положением спектральных полос люминесценции исследуемого вещества и источника света.

Система регистрации выполнена с возможностью детектирования изменения интенсивности спектральных линий возбуждения, поглощения и люминесценции исследуемого вещества в спектре пропускания волокна.

Система регистрации может быть выполнена, например, в виде фотоприёмника.

Изобретение иллюстрируется чертежами, где на фиг. 1 представлена блок-схема заявляемого устройства, а на фиг. 2 - спектр пропускания фотометрического элемента на основе отрезка микроструктурного оптического волокна (а), спектр люминесценции исследуемого вещества (б) и спектр источника возбуждения (в).

На фиг. 1 позициями обозначено:

1 – источник света,

2 – отрезок одномодового оптического волновода,

3 – фотометрический элемент в виде отрезка микроструктурного оптического волокна,

4 - система регистрации – фотоприёмник.

Устройство для определения абсолютного квантового выхода люминесценции содержит расположенные на одной оптической оси источник света 1, одномодовый оптический волновод 2, фотометрический элемент-отрезок микроструктурного оптического волокна 3 и фотоприёмник 4.

В качестве источника света 1 может использоваться, например, лазер марки ThorLab420, в качестве фотометрического элемента 3 – элемент, выполненный в виде отрезка микроструктурного оптического волокна, изготовленного по патенту РФ № 2531127. , в качестве фотоприёмника 4, например, спектрометр AVANTESAvaSpec.

Оптическое микроструктурное волокно представляет собой изготовленную из кварца или другого материала микроструктуру с системой воздушных отверстий, ориентированных вдоль оси волокна, и является двумерным фотонным кристаллом. Подобная микроструктура обычно изготавливается путем вытяжки из заготовки, набранной из капиллярных трубок.

В качестве возможного микроструктурного оптического волокна, в частности, может быть использовано полое фотонно-кристаллическое волокно, изготовленное по патенту РФ № 2531127 и представляющее собой полую сердцевину, окруженную периодическим массивом мультикапилляров, который окружен тонкостенными капиллярами большего диаметра. Для прочности конструкции снаружи уложены монолитные стеклянные штабики.

В другом варианте отрезок микроструктурного волокна, например, длиной от 4 до 300 см, может быть изготовлен из кварцевого, оптического либо иного другого стекла или органического оптически прозрачного материала. Для этого торцевую поверхность волокна подвергают очистке, придают ей ортогональность по отношению к плоскости длины. При необходимости, капилляры внешних оболочек на торцевой поверхности образца изолируют любым возможным методом и впоследствии волокно заполняют исследуемым веществом, например, в виде жидкости или коллоидного раствора.

При этом образец волокна подбирают таким образом, чтобы положение фотонной разрешённой зоны волокна совпадало с положением спектральной полосы люминесценции анализируемого вещества и положением спектральной полосы источника возбуждения, что обеспечивает абсолютность сбора сигнала люминесценции и его передачи на торцевые поверхности волокна с одновременным исключение нецелевых сигналов, лежащих вне фотонной разрешённой зоны волокна.

Уникальность микроструктурных волноводов для оптических технологий и волоконных лазерных систем обусловлена возможностью активного формирования частотного профиля дисперсии собственных мод таких волокон путем изменения их структуры. В подобных волокнах наблюдаются нелинейно-оптические явления и принципиально различные физические механизмы поддержания волноводного распространения электромагнитного излучения, при этом данные оптические волокна способны менять свои нелинейно-оптические свойства в чрезвычайно широких пределах в зависимости от заданной при изготовлении архитектуры.

Примерами использования подобных волокон в современной технике являются детектирование малых концентраций вещества, где преимущество достигается за счет волноводной геометрии измерения, и измерения на живых биологических объектах, которые становятся возможными благодаря гибкости зондов, которая связана с возможностью реализации нулевой дисперсии сигнала в данных волокнах.

Известно, что эффективность преобразования энергии поглощенного света в энергию люминесценции характеризуется энергетическим и квантовым выходами люминесценции. Отношение излучаемой энергии люминесценции к энергии поглощенного света называют энергетическим выходомлюминесценции, а отношение числа излучаемых квантов к числу поглощенных называют квантовым выходом люминесценции.

Если Вэн - энергетический, а Вкв - квантовый выход люминесценции, Ел и Ес - соответственно энергия люминесценции и энергия поглощенного света, а Nл и Nс - число испускаемых и поглощенных квантов, то очевидно, что:

 ;  

где h - постоянная Планка, v - частота. Зависимость энергетического выхода люминесценции от длины волны возбуждающего света подчиняется закону Вавилова, согласно которому энергетический выход люминесценции с увеличением длины волны возбуждающего света сначала возрастает пропорционально длине волны, затем остается постоянным и после достижения некоторой граничной длины волны резко падает.

Учитывая пропорциональность энергетического выхода длине волны возбуждающего света

Т. е. пропорциональность энергетического выхода длине волны поглощенного света означает постоянство квантового выхода люминесценции в этом спектральном интервале.

Устройство работает следующим образом.

Осуществляют предварительное определение спектрального интервала люминесценции исследуемого вещества, затем осуществляют подбор микроструктурного оптического волокна с необходимыми спектральными характеристиками, из которого изготавливают фотометрический элемент любым, описанным выше способом.

Готовят раствор или коллоидный раствор исследуемого вещества с минимально возможной концентрацией квантовых точек, например, состава CdS/ZnS в гексане с концентрацией 1*10-12М, которым заполняют внутренние полости фотометрического элемента под действием капиллярных сил.

Проводят удаление растворителя, например, методом высушивания в вакуумном сушильном шкафу и устанавливают фотометрический элемент с образцом исследуемого вещества в устройство. Излучение лазера марки ThorLab 420 с длиной волны 420 нм и мощностью 0,04 мВт направляют на фотометрический элемент с помощью отрезка одномодового оптического волновода, проводят регистрацию сигналов интенсивности спектральных линий возбуждения, поглощения и люминесценции (см. фиг. 2). Производят последующий расчёт абсолютного квантового выхода по описанным выше формулам.

Таким образом, заявляемое изобретение позволяет решить задачу определения абсолютного квантового выхода люминесценции путём одноразового использования микроструктурного оптического волокна, имеющего значительно меньшие размеры по сравнению с интегральными сферами. Заявляемое устройство упрощает и улучшает качество процедуры определения квантового выхода люминесценции и решает проблему миниатюризации оборудования.


УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО КВАНТОВОГО ВЫХОДА ЛЮМИНЕСЦЕНЦИИ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО КВАНТОВОГО ВЫХОДА ЛЮМИНЕСЦЕНЦИИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 90.
15.03.2020
№220.018.0c62

Способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрической структуры

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для...
Тип: Изобретение
Номер охранного документа: 0002716600
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e36

Направленный 3d ответвитель на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность...
Тип: Изобретение
Номер охранного документа: 0002717257
Дата охранного документа: 19.03.2020
15.04.2020
№220.018.14bf

Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым...
Тип: Изобретение
Номер охранного документа: 0002718773
Дата охранного документа: 14.04.2020
06.07.2020
№220.018.3019

Способ синтеза апконверсионных частиц nayf:er,yb

Изобретение может быть использовано в биофизике, медицинской диагностике и терапии для преобразования инфракрасного излучения в видимое. Готовят водные растворы гексагидратов хлорида иттрия, хлорида иттербия, хлорида эрбия, а также цитрата натрия и фторида натрия. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002725581
Дата охранного документа: 02.07.2020
07.07.2020
№220.018.3064

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к медицине. Способ бесконтактного измерения внутриглазного давления включает воздействие на глаз воздушным импульсом и освещение оптическим излучением, преобразование отражённого от глаза оптического излучения в напряжение, регистрацию зависимости напряжения от времени,...
Тип: Изобретение
Номер охранного документа: 0002725854
Дата охранного документа: 06.07.2020
09.07.2020
№220.018.30bc

Способ детектирования терагерцовых электромагнитных волн

Использование: для создания нанодетекторов терагерцовых электромагнитных волн. Сущность изобретения заключается в том, что способ детектирования терагерцового электромагнитного излучения включает направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии...
Тип: Изобретение
Номер охранного документа: 0002725899
Дата охранного документа: 07.07.2020
24.07.2020
№220.018.3606

Способ получения наночастиц хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из хитозана. Способ предусматривает смешивание хитозана с кислотой и получение целевого продукта. Используют порошок высокомолекулярного хитозана, в качестве кислоты используют порошок...
Тип: Изобретение
Номер охранного документа: 0002727360
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.371e

Оптически управляемый переключатель на магнитостатических волнах

Изобретение относится к области радиотехники СВЧ и касается оптически управляемого переключателя. Переключатель содержит управляющий источник света и волноводную структуру. Волноводная структура выполнена из пленки железо-иттриевого граната, расположенной на подложке галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002727293
Дата охранного документа: 21.07.2020
26.07.2020
№220.018.3881

Способ определения нитрит-ионов

Изобретение относится к аналитической химии, а именно к способу определения нитрит-ионов. Способ включает обработку анализируемой пробы растворами органических реагентов, один из которых на основе п-нитроанилина, а другой дифениламина, выделение из полученной реакционной смеси мицеллярной фазы...
Тип: Изобретение
Номер охранного документа: 0002727879
Дата охранного документа: 24.07.2020
21.04.2023
№223.018.4f1b

Устройство подзарядки аккумулятора беспилотного летательного аппарата

Изобретение относится к подзарядке аккумуляторов беспилотных летательных аппаратов (БЛА) в процессе полета. Устройство подзарядки аккумулятора беспилотного летательного аппарата содержит пороговое устройство, источник питания в виде ионистора и бортовые электроды, выполненные в виде двух блоков...
Тип: Изобретение
Номер охранного документа: 0002794005
Дата охранного документа: 11.04.2023
Показаны записи 21-21 из 21.
02.06.2023
№223.018.7593

Способ получения молекулярно-импринтированного полимера

Изобретение относится к области аналитической химии и молекулярной биологии и может быть использовано для получения полимера, содержащего отпечатки (импринтинг) молекул, с последующим его применением для анализа и разделения молекулярного материала. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002753850
Дата охранного документа: 24.08.2021
+ добавить свой РИД