×
01.09.2019
219.017.c529

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО КВАНТОВОГО ВЫХОДА ЛЮМИНЕСЦЕНЦИИ

Вид РИД

Изобретение

Аннотация: Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический элемент и систему регистрации, при этом устройство дополнительно содержит отрезок одномодового оптического волновода, расположенного между источником света и фотометрическим элементом, а фотометрический элемент выполнен в виде отрезка микроструктурного оптического волокна с полостью для исследуемого вещества, при этом фотонная разрешённая зона волокна совпадает с положением спектральных полос люминесценции исследуемого вещества и источника света. Технический результат: упрощение и улучшение качества процедуры проведения определения абсолютного квантового выхода люминесценции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области техники спектральных измерений и может быть использовано для определения абсолютного квантового выхода люминесценции для исследовательских и практических целей.

Существует два основных принципа измерения квантового выхода: абсолютный, фактически использующий определение квантового выхода как отношения числа излученных и поглощенных фотонов, и относительный, в котором исследуемый образец сравнивается с известным стандартом.

Измерение абсолютного квантового выхода в основном проводится в настоящее время с использованием различных типов интегрирующих (фотометрических) сфер, в которые помещается образец и к которым подводят оптические тракты, идущие к источнику возбуждения и к детектору, при этом производят измерения интенсивности излучения от источников с произвольной индикатрисой. В спектроскопии чаще всего оно используется для измерения коэффициентов отражения диффузно отражающих образцов. Интегрирующая сфера обеспечивает попадание всего отраженного и излученного света на детектор. В одинаковых условиях проводится измерение спектра люминесценции исследуемого образца, спектра люминесценции пустой кюветы, спектра рэлеевского рассеяния образца и спектра рэлеевского рассеяния пустой кюветы.

В настоящее время разработаны конструкции интегрирующих сфер, позволяющие проводить измерения в самом широком спектральном диапазоне и при различных мощностях излучения.

Известна, в частности, интегрирующая сфера для инфракрасной области спектра (см. патент РФ 2251667 по кл. МПК G01J1/04, опуб. 10.05.2005), содержащая волнообразную диффузно отражающую оболочку с покрытием из металла, при этом интегрирующая сфера выполнена из двух соединяемых полусфер, на внутренней поверхности каждой полусферы размещено волнообразное покрытие из стеклоткани с плотной структурой нитей основы и утка, поперечные размеры которых соизмеримы с длиной волны в дальней ИК-области спектра 500-1000 мкм, а поперечные размеры волокон, из которых скручены нити, соизмеримы с длиной волны в ближней ИК-области спектра 1,0-15,0 мкм.

Однако использование интегрирующих сфер имеет определённые ограничения, связанные, в частности, со сложностью изготовления, высокой стоимостью и невозможностью миниатюризации для использования в перспективных малогабаритных устройствах.

Известен также способ определения абсолютного квантового выхода люминесценции и устройство для его реализации (авторское свидетельство СССР № 1695189 по кл. МПК G01N21/64, опуб. 30.11.1991). Способ включает облучение исследуемого образца пучком монохроматического излучения с заданными энергетическими характеристиками, измерение энергетических характеристик излучения люминесценции и определение абсолютного квантового выхода по соотношению между характеристиками возбуждающего излучения и характеристиками излучения люминесценции. Устройство содержит источник когерентного излучения, коллиматор, выполненный в виде соосно-конфокально расположенных линз с диафрагмой, размещённой в фокальной плоскости обеих линз, светоделительную пластинку, устройство крепления образца, фильтр пространственных частот, образованный линзами и диафрагмой, два фотоприёмника и устройство регистрации и обработки сигналов.

Однако данное устройство характеризуется сложностью изготовления, высокой стоимостью и невозможностью использования в полностью волоконных оптических установках и приборах.

Наиболее близким к заявляемому устройству, выбранным в качестве прототипа, является устройство для определения квантового выхода при резонансном возбуждении люминесценции (А.с. СССР №480002 по кл. МПК G01N21/52, опуб. 05.08.1975), содержащее источник света, входное и выходное окна, фотометрическую сферу, внутри которой размещены образец и оптико-механический узел, и фотоприемник. Определение абсолютного квантового выхода люминесценции проводят с учётом отношения чувствительности фотоприемника к возбуждающему потоку и потоку люминесценции, коэффициента зеркального отражения образца в области резонансного перехода и эффективного коэффициента диффузного отражения оптико-механического узла.

Однако данному устройству также присущие общие для интегрирующих сфер недостатки, в частности, значительные затраты времени на подготовку и проведение определений и невозможность миниатюризации для использования в перспективных малогабаритных оптических устройствах.

Технической проблемой заявляемого изобретения является обеспечение возможности миниатюризации приборов и оборудования для определения абсолютного квантового выхода люминесценции.

Технический результат заявляемого изобретения заключается в упрощении и улучшении качества процедуры проведения определения абсолютного квантового выхода люминесценции за счёт одноразового использования микроструктурного оптического волокна.

Указанный технический результат достигается тем, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества, содержащее расположенные на одной оптической оси источник света, фотометрический элемент и систему регистрации, согласно изобретению, дополнительно содержит отрезок одномодового оптического волновода, расположенного между источником света и фотометрическим элементом, а фотометрический элемент выполнен в виде отрезка микроструктурного оптического волокна с полостью для исследуемого вещества, при этом фотонная разрешённая зона волокна совпадает с положением спектральных полос люминесценции исследуемого вещества и источника света.

Система регистрации выполнена с возможностью детектирования изменения интенсивности спектральных линий возбуждения, поглощения и люминесценции исследуемого вещества в спектре пропускания волокна.

Система регистрации может быть выполнена, например, в виде фотоприёмника.

Изобретение иллюстрируется чертежами, где на фиг. 1 представлена блок-схема заявляемого устройства, а на фиг. 2 - спектр пропускания фотометрического элемента на основе отрезка микроструктурного оптического волокна (а), спектр люминесценции исследуемого вещества (б) и спектр источника возбуждения (в).

На фиг. 1 позициями обозначено:

1 – источник света,

2 – отрезок одномодового оптического волновода,

3 – фотометрический элемент в виде отрезка микроструктурного оптического волокна,

4 - система регистрации – фотоприёмник.

Устройство для определения абсолютного квантового выхода люминесценции содержит расположенные на одной оптической оси источник света 1, одномодовый оптический волновод 2, фотометрический элемент-отрезок микроструктурного оптического волокна 3 и фотоприёмник 4.

В качестве источника света 1 может использоваться, например, лазер марки ThorLab420, в качестве фотометрического элемента 3 – элемент, выполненный в виде отрезка микроструктурного оптического волокна, изготовленного по патенту РФ № 2531127. , в качестве фотоприёмника 4, например, спектрометр AVANTESAvaSpec.

Оптическое микроструктурное волокно представляет собой изготовленную из кварца или другого материала микроструктуру с системой воздушных отверстий, ориентированных вдоль оси волокна, и является двумерным фотонным кристаллом. Подобная микроструктура обычно изготавливается путем вытяжки из заготовки, набранной из капиллярных трубок.

В качестве возможного микроструктурного оптического волокна, в частности, может быть использовано полое фотонно-кристаллическое волокно, изготовленное по патенту РФ № 2531127 и представляющее собой полую сердцевину, окруженную периодическим массивом мультикапилляров, который окружен тонкостенными капиллярами большего диаметра. Для прочности конструкции снаружи уложены монолитные стеклянные штабики.

В другом варианте отрезок микроструктурного волокна, например, длиной от 4 до 300 см, может быть изготовлен из кварцевого, оптического либо иного другого стекла или органического оптически прозрачного материала. Для этого торцевую поверхность волокна подвергают очистке, придают ей ортогональность по отношению к плоскости длины. При необходимости, капилляры внешних оболочек на торцевой поверхности образца изолируют любым возможным методом и впоследствии волокно заполняют исследуемым веществом, например, в виде жидкости или коллоидного раствора.

При этом образец волокна подбирают таким образом, чтобы положение фотонной разрешённой зоны волокна совпадало с положением спектральной полосы люминесценции анализируемого вещества и положением спектральной полосы источника возбуждения, что обеспечивает абсолютность сбора сигнала люминесценции и его передачи на торцевые поверхности волокна с одновременным исключение нецелевых сигналов, лежащих вне фотонной разрешённой зоны волокна.

Уникальность микроструктурных волноводов для оптических технологий и волоконных лазерных систем обусловлена возможностью активного формирования частотного профиля дисперсии собственных мод таких волокон путем изменения их структуры. В подобных волокнах наблюдаются нелинейно-оптические явления и принципиально различные физические механизмы поддержания волноводного распространения электромагнитного излучения, при этом данные оптические волокна способны менять свои нелинейно-оптические свойства в чрезвычайно широких пределах в зависимости от заданной при изготовлении архитектуры.

Примерами использования подобных волокон в современной технике являются детектирование малых концентраций вещества, где преимущество достигается за счет волноводной геометрии измерения, и измерения на живых биологических объектах, которые становятся возможными благодаря гибкости зондов, которая связана с возможностью реализации нулевой дисперсии сигнала в данных волокнах.

Известно, что эффективность преобразования энергии поглощенного света в энергию люминесценции характеризуется энергетическим и квантовым выходами люминесценции. Отношение излучаемой энергии люминесценции к энергии поглощенного света называют энергетическим выходомлюминесценции, а отношение числа излучаемых квантов к числу поглощенных называют квантовым выходом люминесценции.

Если Вэн - энергетический, а Вкв - квантовый выход люминесценции, Ел и Ес - соответственно энергия люминесценции и энергия поглощенного света, а Nл и Nс - число испускаемых и поглощенных квантов, то очевидно, что:

 ;  

где h - постоянная Планка, v - частота. Зависимость энергетического выхода люминесценции от длины волны возбуждающего света подчиняется закону Вавилова, согласно которому энергетический выход люминесценции с увеличением длины волны возбуждающего света сначала возрастает пропорционально длине волны, затем остается постоянным и после достижения некоторой граничной длины волны резко падает.

Учитывая пропорциональность энергетического выхода длине волны возбуждающего света

Т. е. пропорциональность энергетического выхода длине волны поглощенного света означает постоянство квантового выхода люминесценции в этом спектральном интервале.

Устройство работает следующим образом.

Осуществляют предварительное определение спектрального интервала люминесценции исследуемого вещества, затем осуществляют подбор микроструктурного оптического волокна с необходимыми спектральными характеристиками, из которого изготавливают фотометрический элемент любым, описанным выше способом.

Готовят раствор или коллоидный раствор исследуемого вещества с минимально возможной концентрацией квантовых точек, например, состава CdS/ZnS в гексане с концентрацией 1*10-12М, которым заполняют внутренние полости фотометрического элемента под действием капиллярных сил.

Проводят удаление растворителя, например, методом высушивания в вакуумном сушильном шкафу и устанавливают фотометрический элемент с образцом исследуемого вещества в устройство. Излучение лазера марки ThorLab 420 с длиной волны 420 нм и мощностью 0,04 мВт направляют на фотометрический элемент с помощью отрезка одномодового оптического волновода, проводят регистрацию сигналов интенсивности спектральных линий возбуждения, поглощения и люминесценции (см. фиг. 2). Производят последующий расчёт абсолютного квантового выхода по описанным выше формулам.

Таким образом, заявляемое изобретение позволяет решить задачу определения абсолютного квантового выхода люминесценции путём одноразового использования микроструктурного оптического волокна, имеющего значительно меньшие размеры по сравнению с интегральными сферами. Заявляемое устройство упрощает и улучшает качество процедуры определения квантового выхода люминесценции и решает проблему миниатюризации оборудования.


УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО КВАНТОВОГО ВЫХОДА ЛЮМИНЕСЦЕНЦИИ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО КВАНТОВОГО ВЫХОДА ЛЮМИНЕСЦЕНЦИИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 90.
25.08.2017
№217.015.aa4d

Способ оценки количества гидроксильных групп на внутренней поверхности фотонно-кристаллического волновода

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для...
Тип: Изобретение
Номер охранного документа: 0002611573
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa50

Способ получения квантовых точек, функционализированных дендримерами

Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100. В...
Тип: Изобретение
Номер охранного документа: 0002611535
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa77

Способ определения диаметра ферромагнитных частиц и объемной доли твердой фазы магнитной жидкости

Изобретение относится к измерительной технике, может быть использовано для определения диаметра ферромагнитных частиц и объемной доли твердой фазы магнитной жидкости. Способ определения диаметра частиц и объемной доли твердой фазы магнитной жидкости, включающий в себя этапы, на которых...
Тип: Изобретение
Номер охранного документа: 0002611694
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ab38

Способ прогнозирования риска развития аденокарциномы желудка при хронических процессах язвообразования органа

Изобретение относится к области медицины, а именно к области гастроэнтерологии и онкологии, и может быть использовано для прогнозирования риска развития аденокарциномы желудка. Сущность способа: проводят биохимическое определение содержания бета-аррестина-1 и оксида азота в крови; при...
Тип: Изобретение
Номер охранного документа: 0002612021
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.c0c7

Гидрогель на основе комплексной соли хитозана и способ его получения

Изобретение относится к производству фармацевтических и косметических средств, а именно к гидрогелю и способу производства гидрогеля с выраженной биологической активностью, который может быть использован в качестве лечебно-профилактического препарата в медицине, ветеринарии, косметологии,...
Тип: Изобретение
Номер охранного документа: 0002617501
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c0ce

Способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС) с селективно запаянными внешними оболочками для использования в различных целях, в т.ч. для изготовления конструктивных элементов сенсоров,...
Тип: Изобретение
Номер охранного документа: 0002617650
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c187

Способ очистки газовых выбросов с помощью гранулированного глауконитового сорбента

Изобретение относится к способу очистки вредных техногенных газовых выбросов в атмосферу от различных загрязнителей и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных...
Тип: Изобретение
Номер охранного документа: 0002617504
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c3f8

Способ оценки содержания гумуса в почве петромагнитным методом

Изобретение относится к области почвоведения, а именно к агрохимии, и предназначено для оценки концентрации гумуса в образцах черноземных почв петромагнитным методом. Для этого отбирают образцы почвы в пахотном горизонте, в которых определяют величину магнитной восприимчивости k. Затем образцы...
Тип: Изобретение
Номер охранного документа: 0002617239
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.cd1c

Способ диагностики наполненности мочевого пузыря

Изобретение относится к медицине и нефрологии и может быть использовано для определения наполненности мочевого пузыря. Накладывают электроды на кожу в области нахождения мочевого пузыря. Подключают их к усилителю биопотенциалов для получения двух отведений, с помощью которых измеряют сигналы...
Тип: Изобретение
Номер охранного документа: 0002619752
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.cdc8

Способ определения толщины, электропроводности, эффективной массы, коэффициентов рассеяния носителей заряда, концентрации и энергии активации легирующей примеси полупроводникового слоя

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002619802
Дата охранного документа: 18.05.2017
Показаны записи 11-20 из 21.
12.01.2017
№217.015.6093

Жаропрочный никелевый сплав для получения изделий методом металлургии гранул

Изобретение относится к области металлургии, а именно к жаропрочным никелевым сплавам для получения изделий, производимых методом металлургии гранул и предназначенных для работы при высоких нагрузках и температурах, например в газотурбинных двигателях. Сплав содержит, мас. %: углерод -...
Тип: Изобретение
Номер охранного документа: 0002590792
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.a1b3

Чирпированный микроструктурный волновод и способ его изготовления

Изобретение относится к области нанотехнологий, в частности к области производства оптического волокна. Чирпированное фотонно-кристаллическое волокно состоит из центральной волноведущей жилы и структурированной оболочки в виде массива капилляров, диаметры которых возрастают от центра к...
Тип: Изобретение
Номер охранного документа: 0002606796
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9c6

Способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом. Описан...
Тип: Изобретение
Номер охранного документа: 0002611541
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa4d

Способ оценки количества гидроксильных групп на внутренней поверхности фотонно-кристаллического волновода

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для...
Тип: Изобретение
Номер охранного документа: 0002611573
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa50

Способ получения квантовых точек, функционализированных дендримерами

Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100. В...
Тип: Изобретение
Номер охранного документа: 0002611535
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.c0ce

Способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС) с селективно запаянными внешними оболочками для использования в различных целях, в т.ч. для изготовления конструктивных элементов сенсоров,...
Тип: Изобретение
Номер охранного документа: 0002617650
Дата охранного документа: 25.04.2017
20.11.2017
№217.015.ef85

Способ селективной запайки внешних оболочек фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При...
Тип: Изобретение
Номер охранного документа: 0002629133
Дата охранного документа: 24.08.2017
04.04.2018
№218.016.36ce

Суперконденсаторная ячейка

Изобретение относится к области суперконденсаторов и может быть использовано в энергетических системах, функционирующих за счет запасаемой электрической энергии, в особенности солнечной энергетике, в качестве накопителей и автономных источников питания с управляемыми характеристиками заряда и...
Тип: Изобретение
Номер охранного документа: 0002646531
Дата охранного документа: 05.03.2018
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
20.04.2023
№223.018.4d95

Способ изготовления зонных пластин

Способ изготовления зонных пластин, в котором формируют блок из стеклянных пластин двух сортов, имеющих различную плотность и диэлектрическую проницаемость, но одинаковую площадь и объем, располагая пластины первого и второго сорта поочередно. С обеих сторон блока находятся пакеты пластин из...
Тип: Изобретение
Номер охранного документа: 0002793078
Дата охранного документа: 28.03.2023
+ добавить свой РИД