×
23.08.2019
219.017.c237

Результат интеллектуальной деятельности: Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения и контроля качества оптических волноводов. Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца состоит в следующем. В качестве источника пробного излучения, в соприкосновение с измеряемым окончанием оптического волокна приводят перетяжку вытянутого оптического волокна. Через это тянутое волокно подают излучение с перестраиваемой длиной волны от внешнего источника, например, полупроводникового или волоконного лазера, которое через затухающие колебания передается в исследуемый оптический волновод и возбуждает в нем АМШГ. Выходной оптический сигнал снимается при помощи того же тянутого волокна либо в отражении (с той же стороны, куда подается возбуждающее излучение), либо в пропускании (с противоположной стороны). Спектральный отклик, полученный таким образом, сильно зависит от условий отражения возбужденной АМШГ от торца исследуемого оптического волокна, причем количество, интенсивность и длины волн резонансов зависят от угла скола оптического волокна и формы торца. Эти зависимости определяют заранее, либо при помощи экспериментальных измерений тестовых волокон с разным углом скола и/или разной формой торца, либо при помощи числового моделирования Другой вариант измерения профиля торца оптического волокна и расстояния от точки возбуждения АМШГ до торца основан на импульсном возбуждении оптических мод шепчущей галереи с аксиальной компонентой (АМШГ) и использований методов временной рефлектометрии для определения расстояния от точки возбуждения до торца исследуемого оптического волокна и анализе формы и интенсивности импульсного сигнала, отраженного торцом волновода и принятого фотодетектором для оценки угла и формы этого торца. Технический результат заключается в высокоточном измерении профиля торца оптического волокна и, наряду с оценкой профиля торца оптического волокна, в измерении коротких длин отрезка волокна от точки возбуждения до его торца. 2 н. и 2 з.п. ф-лы, 5 ил.

Область техники

Изобретение относится к области измерения и контроля качества оптических волноводов, в частности, к методам измерения угла скола и профиля торца оптического волокна или интегрированного волновода.

Измерение параметров оптических волноводов является важнейшим процессом как при производстве, так и при использовании таких волноводов в различных фотонных устройствах. Более того, по мере миниатюризации оптоволоконных технологий И разработки различных комбинированных устройств с элементами фотонных интегральных схем, требования к точности измерений возрастают. Во многих подобных приложениях необходимо контролировать параметры волноводов или оптических волокон, уже встроенных в интегрированное фотонное устройство, что делает затруднительным применение многих известных методов. Поэтому желательно иметь возможность делать необходимые измерения в условиях ограниченного доступа к тестируемым элементам.

Уровень техники

Большая часть методов измерения параметров оптических волноводов, разработанных к настоящему времени, преимущественно рассчитаны на работу с оптическими волокнами для цифровой передачи данных.

Известны многочисленные реализации методов локализации дефектов и обрывов оптического волоконного кабеля при помощи временной оптической рефлектометрии (см. например, патент США 3,981,592). Они представляют очень хорошо разработанную технологию, которая широко используется в оптической связи и других областях, где применяются достаточно длинные световоды. Однако, в силу технических ограничений и дороговизны компонентов с высоким временным разрешением, такие методы не применяются для коротких отрезков волноводов. По тем же причинам они непригодны для точной локализации

Для оценки качества торцевых поверхностей оптических волоконных световодов, и, в частности, угла скола, применяются разнообразные методы, часть из которых использует цифровые камеры и анализ нескольких изображений торца волокна, полученных на разных расстояниях от него при помощи механического перемещения (например, патенты США 5,140,167 и 5,179,419). Похожие способы (см., например, патент США 9019486) опираются на освещение торца волокна с разных направлений. Эти методы дают возможность детального исследования торцевой поверхности волокна, однако их применимость ограничена глубиной резкости используемых оптических систем и механической точностью перемещения волокна. В силу необходимости механических манипуляций, такие методы также требуют определенного времени на каждое измерение.

Другие методы используют изображение или тень оптического волокна и его торца в направлении, перпендикулярном продольной оси волокна, в сочетании с метками, частичное или полное перекрытие которых торцом волокна позволяет судить о его перпендикулярности оси волокна (см., например, патент США 6,046,798). В данном случае также необходимо механическое перемещение волокна относительно меток и его вращение вокруг оси для того, чтобы с уверенностью определить угол скола. Кроме того, теневой и близкие к нему способы не дают никакой другой информации об измеряемом волокне.

Ряд альтернативных способов опирается на интерферометрические технологии. Так, например, патент США 9,983,364 предлагает использовать интерферометрический микроскоп для определения параметров торца оптического волокна (в т.ч. и угла скола). Используются также и интерферометрические профилометры На основе разных типов интерферометров. В качестве примера таких методов можно привести патент США 5,459,564 где в качестве измерительного прибора предлагается интерферометр Тваймана-Грина. Хотя точность йнтерферометрических методов весьма высока, а их применение в ряде случаев оказывается необходимым, они требуют высококачественных дискретных оптических компонент (особенно опорного элемента), а также большой механической точности и стабильности. Кроме того, в ряде случаев достигаемая ими точность может оказываться чрезмерной, а развитие интегрированных оптических схем приводит к тому, что установка инспектируемой поверхности в интерферометр может быть невозможна.

Таким образом, есть необходимость в разработке новых подходов, которые могли бы применяться как в случае обычных оптических волокон, так и в случае миниатюризированных и/или интегрированных волоконных элементов.

Раскрытие изобретения

Задача изобретения - создание метода измерения профиля торца оптического волокна, который не требует включения этого торца в оптическую схему измерения и совместим как с обычными волоконными волноводами, так и с интегрированными оптическими микроэлементами.

Техническим результатом является высокоточное измерение профиля торца оптического волокна и, наряду с оценкой профиля торца оптического волокна, измерение коротких длин отрезка волокна от точки возбуждения до его торца.

Поставленная задача решается при помощи возбуждения по периметру измеряемого оптического волокна оптических мод шепчущей галереи с аксиальной компонентой (АМШГ). Основные особенности таких мод и способы их возбуждения раскрыты в патентах США 8,860,935 и 8,755,653. В качестве источника пробного излучения, в соприкосновение с Измеряемым окончанием оптического волокна приводят перетяжку вытянутого оптического волокна. Через это тянутое волокно подают излучение с перестраиваемой длиной волны от внешнего источника, например, полупроводникового или волоконного лазера, которое через запредельные (затухающие) колебания передается в исследуемый оптический волновод и возбуждает в нем АМШГ (см. рис 1).

Выходной оптический сигнал снимается при помощи того же тянутого волокна либо в отражении (с той же стороны, куда подается возбуждающее излучение), либо в пропускании (с противоположной стороны).

В первом варианте возбуждение осуществляют Непрерывным излучением и измеряют спектральный отклик системы тянутое волокно - Исследуемое окончание оптического волокна при помощи внешнего оптического спектроанализатора. При этом производят нормировку полученных данных на длину волны основного резонанса АМШГ (т.е. с наибольшей возможной длйной волны возбуждающего излучения) в исследуемом образце так, чтобы в спектральные зависимости для дальнейшего анализа входило изменение длины волны относительно значения основного резонанса. Также, при необходимости, производят нормировку на другие ключевые показатели исследуемого оптического волокна, такие как диаметр его оболочки и ее показатель преломления, с тем, чтобы привести полученные данные в общую форму, которая уже не зависит от этих величин

Спектральный отклик, полученный таким образом, сильно зависит от условий отражения возбужденной АМШГ от торца исследуемого оптического волокна, причем количество, интенсивность и длины волн резонансов зависят от угла скола оптического волокна и формы торца. Эти зависимости определяют заранее, либо при помощи экспериментальных измерений тестовых волокон с разным углом скола и/или разной формой торца, либо при помощи числового моделирования (которое, как показывают данные, например, из [М. Sumetsky, "Theory of SNAP devices: basic equations and comparison with the experiment," Optics Express Vol. 20, No 20, pp.22537-22554 (2012), doi: 10.1364/OE.20.022537)] [Sumetsky 2012], с достаточной точностью может предсказывать реальные измерения).

Второй вариант измерения профиля торца оптического волокна и расстояния от точки возбуждения АМШГ до торца основан на импульсном возбуждении оптических мод шепчущей галереи с аксиальной компонентой (АМШГ) и использовании методов временной рефлектометрии для определения расстояния от точки возбуждения до торца исследуемого оптического волокна и анализе формы и интенсивности импульсного сигнала, отраженного торцом волновода и принятого фотодетектором для оценки угла и формы этого торца.

Описание изобретения поясняется рисунками 1, 2, 3, 4, 5

На Рис. 1 приведена схема возбуждения АМШГ в оптическом волокне для измерения параметров его торца, где: 1 - исследуемое оптическое волоконо, 2 - точка возбуждения АМШГ, 3 - возбужденные аксиальные МШГ, 4 - выходное излучение, 5 - торец исследуемого оптического волокна, 6 - тянутое оптическое волокно (источник затухающих волн для связи с поверхностными аксиальными МШГ, 7 - входное возбуждающее излучение.

На Рис. 2. приведена карта спектрального отклика оптического волокна с перпендикулярным торцом, полученная сканированием длины волны пробного излучения на разных расстояниях от торца. Кружками обозначены теоретические значения.

На Рис. 3. - карта спектрального отклика, полученная для оптического волокна с наклонным (неперпендикулярным) торцом аналогично рис. 1. Кружками обозначены теоретические значения.

На Рис. 2 и 3, как пример зависимости спектрального отклика от угла скола оптического волокна, даются экспериментально полученные данные, соответствующие сколам стандартного оптического волокна SMF-28 диаметром 125 цм под углами 90° и 64°24''.

На Рис. 4 приведено пропускание пробного излучения при возбуждении в тестируемом оптическом волокне аксиальных МШГ в случае перпендикулярного (а) и наклонного (б) торцов на одинаковом расстоянии (70 μм) от ближайшего края торца.

На Рис. 5 приведены результаты рефлектометрии с применением аксиальных МШГ для определения расстояния точки возбуждения мод от торца исследуемого оптического волокна.

Рисунки 2, 3, 4 получены при реализации первого варианта способа измерения профиля торца волоконного световода возбуждением аксиальных мод шепчущей галереи.

Рисунки 2 и 3 отличаются распределением и амплитудой резонансов аксиальных МШГ, которые изображены на этих рисунках в виде полутоновой карты интенсивностей. Например, основной резонанс в волокне с перпендикулярным торцом (самая длинноволновая мода, соответствующая нулевому отклонению длины волны) имеет гораздо большую интенсивность и выглядит более непрерывным по длине волокна. Этот факт подчеркивается также рисунком 4, где приведены срезы вышеупомянутой карты интенсивностей, соответствующие одному и тому же расстоянию до торца волокна в случае его перпендикулярного и наклонного положения.

Дополнительные резонансы в спектральном отклике возникают благодаря деструктивной интерференции волн АМШГ, отраженных от торца оптического волокна, и волн, возникающих около средства возбуждения [М. Sumetsky and J. М. Fini, "Surface nanoscale axial photonics," Opt. Express 19,26470 (2011). doi: 10.1364/OE. 19.026470]. Положение резонансов в спектральном отклике определяется расстоянием от точки возбуждения АМШГ до торца оптического волокна и коэффициентом преломления для АМШГ, й задается соотношением:

где λN - длина волны пика с номером N

Здесь λN- длина волны пика с номером N, λ0 - длина волны основного резонанса, n -эффективный коэффициент преломления оболочки световода, который для стандартных телекоммуникационных волокон составляет 1.45, - расстояние от точки возбуждения до торца оптического волокна. Определение расстояния, таким образом, реализуется подбором значения при котором формула (1) наилучшим образом описывает спектральный отклик, например, методом наименьших квадратов.

Для определения параметров торца оптического волокна не обязательно получать подробную карту резонансов в зависимости от расстояния источника излучения от него. В зависимости от того, как точно и какие параметры требуется измерить, может потребоваться лишь одно или несколько касаний источника излучения (тянутого волокна) на разных расстояниях от торца тестируемого волокна. Это обстоятельство иллюстрируется следующим рис. 4, где представлены графики резонансов пробного излучения при возбуждении в тестируемом волокне аксиальных МШГ в случае перпендикулярного (а) И наклонного(б) торцов на одинаковом расстоянии (70 μм) от ближайшего края торца.

Второй вариант измерения, который может использоваться либо в дополнение к вышеописанному, либо самостоятельно, опирается на импульсное возбуждение и использует тот факт, что скорость распространения аксиальной МШГ вдоль оси оптического волокна оказывается в сотни раз меньше скорости света в этой среде (вблизи резонансов, см., например [Sumetsky 2012].

В силу этого, оказывается можно использовать методы временной рефлектометрии для измерения очень небольших расстояний (~ 1 мм), что технически трудно выполнимо в случае обычных продольных мод, так как требует генерации и регистрации импульсов фемтосекундного диапазона длительностей. Такие измерения могут осуществляться в то же время, что и регистрация спектрального отклика торца оптического волокна, путем переключения источника пробного излучения в импульсный режим. Это может быть реализовано, например, переводом лазерного источника из непрерывного режима в режим синхронизации мод или модуляции добротности, а также внешним акустооптическим или электрооптическим модулятором.

При помощи импульсного режима источника излучения формируют импульсы с длительностью, значительно меньшей времени распространения аксиальной МШГ от точки контакта тянутого волокна до торца исследуемого оптического волокна, чтобы упростить математические расчеты путем пренебрежения длительностью возбуждающих импульсов.

Их форма при этом может быть как, например, преимущественно прямоугольной, так и заранее известной другой (допустим, гауссовой или sech2). Указанные импульсы подают в тянутое волокно, перетяжка которого касается исследуемого оптического волокна вблизи его торца и регистрируют сигнал, отраженный от этого торца фотодетектором, установленным с другой стороны перетяжки тянутого волокна (см. рис. 1). По времени прихода отраженного сигнала определяют расстояние от места возбуждения до окончания исследуемого оптического волокна.

Поскольку в зависимости от локальных неравномерностей радиуса и/или показателя преломления внешнего слоя исследуемого оптического волокна вид и скорость распространения аксиальных МШГ может также быть различной, могут потребоваться несколько измерений с разной длинной или формой пробного импульса. Как и в случае определения угла и/или формы торца оптического волокна, эта задача может решаться либо при помощи заранее приготовленного набора задержек и форм отраженного сигнала в зависимости от расстояния точки замера от торца исследуемого оптического волокна, либо при помощи численного моделирования.

Кроме этого, следует заметить, что, подобно резонансам аксиальных МШГ, форма и интенсивность импульсного сигнала, отраженного торцом оптического волокна и принятого фотодетектором, также зависят от угла и формы этого торца. Таким образом, это обстоятельство также может быть использовано, аналогично описанным выше, для определения параметров торца исследуемого оптического волокна. В качестве иллюстрации описываемого измерения, на рис. 5 приведены результаты рефлектометрии, соответствующие разным расстояниям точки возбуждения от торца исследуемого волновода (оптическое волокно SMF-28).

На графике (а) приведены возбуждающий сигнал длительностью 1.6 не (начальный импульс высокой интенсивности) и отраженные сигналы, соответствующие различным расстояниям от торца оптического волокна. Для наглядности, кривые, соответствующие разным измерениям смещены по вертикали, а измеренное время задержки И соответствующее ему расстояние до торца оптического волокна даны на графике (б).

Пример использования способа (варианты)

1. В качестве примера использования предлагаемого метода измерений был использована лазерная установка. Система включала непрерывный полупроводниковый лазер, излучающий на длине волны 1532.69 нм, амплитудный модулятор, который можно было использовать для формирования импульсов возбуждающего излучения, а также два контроллера поляризаций для ее корректировки на входе и выходе модулятора. Амплидутный модулятор управлялся при помощи высокочастотного генератора электрических импульсов, которые через усилитель подавались на управляющий вход модулятора. Пробное излучение с выходного контроллера поляризации подавалось в тянутое волокно, служащее для возбуждения в исследуемом оптическом волокне МШГ через затухающие (нераспро-страняющиеся) оптические колебания.

В режиме регистрации резонансов аксиальных МШГ, амплитудный модулятор не использовался, а сигнал с выходного конца тянутого волокна подавался в оптический спектроанализатор на различных расстояниях касания тянутого волокна и исследуемого оптического волокна от его торца. Примеры зарегистрированных резонансов аксиальных МШГ в пропусканий приведены на рис. 2 и 3. Возможность определения угла скола торца изучаемого оптического волокна без необходимости сканирования резонансов по расстоянию от торца оптического волокна может быть также продемонстрирована рис. 4, где даны спектральные отклики исследуемого волокна на одном и том же расстоянии от торца в случае перпендикулярного и наклонного сколов.

2. В режиме рефлектометрии, амплитудный модулятор использовался для формирования пробного импульса, а выходное излучение направлялось сначала в оптический усилитель, а затем, через узкий оптический фильтр, пропускающий только длину волны возбуждающего сигнала (для отсечения спонтанного излучения из усилителя), регистрировалось быстрым фотодетектором и системой записи данных (запоминающий осциллограф). Простой анализ полученного отклика позволяет измерить расстояние до торца изучаемого оптического волокна, как показано на рис. 5. Более сложный анализ с учетом амплитуды и формы отраженного сигнала позволяет повысить точность измерения расстояния, а также сделать выводы об угле скола исследуемого оптического волокна и его форме.


Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)
Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)
Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)
Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)
Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)
Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)
Источник поступления информации: Роспатент

Показаны записи 21-30 из 59.
29.05.2018
№218.016.5306

Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны

Изобретение относится к области оптических измерений и касается интерферометра для определения показателя преломления инфракрасной поверхностной электромагнитной волны (ПЭВ). Интерферометр содержит источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002653590
Дата охранного документа: 11.05.2018
08.07.2018
№218.016.6e77

Катализатор гидрирования фурфурола

Изобретение относится к области разработки катализатора селективного гидрирования фурфурола до фурфурилового спирта. Катализатор содержит Ni и Мо в форме сплава и в качестве модификатора до 4 мас. % углерода в форме карбида Ni и/или Мо, причем соотношение Ni к Мо в катализаторе варьируется до...
Тип: Изобретение
Номер охранного документа: 0002660439
Дата охранного документа: 06.07.2018
14.07.2018
№218.016.716e

Способ изготовления биметаллического электрода путем электрошлаковой наплавки

Изобретение относится к области металлургии и может быть использовано в литейном производстве при изготовлении биметаллических деталей. В способе используют стальную трубу, которую жестко закрепляют на стальной пластине - нижнем электроде, образующем донную часть отрезка стальной трубы,...
Тип: Изобретение
Номер охранного документа: 0002661322
Дата охранного документа: 13.07.2018
22.09.2018
№218.016.8974

Способ геологического картирования аккреционных комплексов

Изобретение относится к области геологического картирования и может быть использовано для картирования аккреционных комплексов горных пород. Сущность: выделяют пачки пород (хорсы), ограниченные двумя системами надвигов, характеризуемые повторяемостью одинаковых ассоциаций пород, включающих в...
Тип: Изобретение
Номер охранного документа: 0002667329
Дата охранного документа: 18.09.2018
12.12.2018
№218.016.a57f

Способ обнаружения неструктурных элементов геологического разреза по сейсмограммам общего выноса

Изобретение относится к области сейсморазведки, а именно к методам построения разрезов геологической среды по сейсмическим данным (сейсмических разрезов), позволяющий, используя различие свойств отраженных и рассеянных событий на сейсмограммах общего выноса, более устойчиво (надежно) и с...
Тип: Изобретение
Номер охранного документа: 0002674419
Дата охранного документа: 07.12.2018
26.01.2019
№219.016.b4c8

Способ подготовки пылеугольного топлива для сжигания

Изобретение описывает способ подготовки пылеугольного топлива для сжигания, включающий сушку и дробление сырого угля, при этом на этот уголь перед дроблением наносят модифицированное жидкое стекло (МЖС), обладающее высоким коэффициентом смачивания поверхности угольной пыли, образующейся в...
Тип: Изобретение
Номер охранного документа: 0002678310
Дата охранного документа: 25.01.2019
01.03.2019
№219.016.c876

Способ оценки числа функционирующих кровеносных капилляров у человека (варианты)

Группа изобретений относится к медицине, а именно к сердечно-сосудистым заболеваниям, физиологии, спортивной медицине. Группа изобретений представлена способами оценки числа функционирующих кровеносных капилляров у человека в коронарном, большом кругах кровообращения и в скелетных мышцах....
Тип: Изобретение
Номер охранного документа: 0002680798
Дата охранного документа: 26.02.2019
01.03.2019
№219.016.c8ba

Способ получения фурфурилового спирта путем селективного гидрирования фурфурола

Изобретение относится к способу получения фурфурилового спирта путем селективного гидрирования фурфурола, который заключается в гидрировании фурфурола в присутствии гетерогенного катализатора, где используемый катализатор содержит: 5,0-40,0 мас. % CuO; носитель - остальное; при этом носитель...
Тип: Изобретение
Номер охранного документа: 0002680799
Дата охранного документа: 27.02.2019
30.05.2019
№219.017.6b6e

Катализатор селективного гидрирования фурфурола

Изобретение относится к катализатору селективного гидрирования фурфурола до фурфурилового спирта, содержащему оксиды меди и железа, при этом в его составе 5,0-40,0 мас.% CuO, носитель - остальное, причем в качестве носителя взята шпинель со структурой FeO, содержащая 48-85,5 мас.% FeO, а также...
Тип: Изобретение
Номер охранного документа: 0002689418
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6b81

Способ приготовления катализатора селективного гидрирования фурфурола

Изобретение относится к способу приготовления катализатора селективного гидрирования фурфурола до фурфурилового спирта, который заключается в том, что смешивают кристаллогидраты нитратов меди, железа и алюминия, далее полученную смесь кристаллогидратов нитратов меди, железа и алюминия сплавляют...
Тип: Изобретение
Номер охранного документа: 0002689417
Дата охранного документа: 28.05.2019
Показаны записи 1-3 из 3.
10.05.2018
№218.016.38dd

Способ анализа спектрально-временной эволюции излучения

Способ анализа спектрально-временной эволюции излучения включает в себя получение сигнала оптического гетеродина, измерение интенсивности сигнала, получение аналитической формы сигнала при помощи гильбертова дополнения. Далее вычисляют автокорреляционную функцию методом быстрого преобразования...
Тип: Изобретение
Номер охранного документа: 0002646940
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.4304

Способ измерения пространственно-временной эволюции излучения

Изобретение относится к методам спектроскопии высокого разрешения и пространственно-временного анализа оптического излучения со сложной структурой и относительно быстрой эволюцией. Оно может быть использовано при проведении научных и прикладных исследований лазерных систем, в том числе...
Тип: Изобретение
Номер охранного документа: 0002649643
Дата охранного документа: 04.04.2018
21.06.2020
№220.018.2886

Способ изготовления устройства поверхностной аксиальной нанофотоники

Изобретение относится к области нанооптических технологий. Способ изготовления устройства поверхностной аксиальной нанофотоники (SNAP) реализуется путем создания заданного профиля эффективного радиуса волокна по его оси последовательным воздействием сфокусированным излучением на определенные...
Тип: Изобретение
Номер охранного документа: 0002723979
Дата охранного документа: 18.06.2020
+ добавить свой РИД