×
17.08.2019
219.017.c110

Результат интеллектуальной деятельности: Электродвигатель с внешним ротором и системой охлаждения статора

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, в частности, к охлаждению статора обращенной машины. Технический результат - повышение надежности и КПД. Электродвигатель с внешним ротором и системой охлаждения статора включает статический вал, установленный в подшипниковой опоре, концентрично которому установлен магнитопровод статора с рабочей обмоткой и ее лобовыми вылетами. Электродвигатель дополнительно снабжен полым цилиндром, внутри которого установлен магнитопровод статора. Цилиндр содержит крышки, герметично соединенные с валом и соответствующими торцами цилиндра, и две внутренние перегородки, образующие полости. Статический вал содержит каналы для подвода и отвода хладагента, каждый из которых сообщен с полостью цилиндра, расположенной со стороны подшипниковой опоры. Полость, расположенная со стороны свободного конца вала, снабжена штуцерами для подвода и отвода хладагента. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электромашиностроения, а именно к электродвигателям закрытого исполнения с внешним ротором и системой охлаждения статора, и предназначено для использования в системах электроснабжения и электропривода автономных объектов (летательных аппаратов, автомобилей, средств водного транспорта), где требуется отводить значительное количество выделяющегося в закрытых электродвигателях тепла, обусловленного реализацией в них повышенных электромагнитных нагрузок.

Обеспечение работоспособности подшипниковых опор и эффективное охлаждение теплонапряженных узлов электродвигателей позволяют повысить их ресурс и обеспечить надежность эксплуатации.

Известна комбинированная система охлаждения закрытой электрической машины (RU 2201647, 2003), содержащая выполненные в корпусе статора и закрытые металлической оболочкой (нижней оболочкой) каналы принудительного жидкостного охлаждения и расположенный над ними закрытый с наружной стороны машины верхней металлической оболочкой и герметизированный от проникновения охлаждающей жидкости и наружного воздуха теплообменник в виде полости, относящейся к замкнутой системе принудительного воздушного охлаждения, и центробежный вентилятор, расположенный на валу машины. Внутренние полости машины сообщаются с каналами охлаждения воздуха через перепускные отверстия, выполненные по периметру статора с его торцов и изолированные от каналов охлаждения машины жидкостью, которые выполнены винтовыми и соединены гибкими шлангами с герметическими камерами подшипниковых щитов. Основания каналов жидкостного охлаждения и наружная поверхность нижней оболочки, являющейся основанием теплообменника, в этой системе выполнены гладкими.

Недостатками известного технического решения являются: низкая эффективность теплопередачи от корпуса к охлаждающей жидкости и от нагретого поступающего из внутренних полостей машины воздуха к охлаждающей жидкости, неравномерность охлаждения статора в осевом направлении, вызванная подогревом жидкости при движении ее в этой машине по винтовому каналу, протяженность которого превышает длину машины, а также значительное гидравлическое сопротивление для прохождения воздуха через входные отверстия в корпусе в теплообменник, следствием чего является низкий коэффициент полезного действия (КПД) циркуляции воздуха внутри машины и ее низкая эффективность.

Известна электрическая машина закрытого исполнения с жидкостным охлаждением сердечника статора (SU 1436195, 1988). Корпус машины содержит смежные контуры охлаждения в виде двухзаходных винтовых каналов, которые соединены между собой с одного из торцов корпуса с образованием общего последовательного контура, при этом один из двухзаходных винтовых каналов выполнен в виде трубки, расположенной в другом винтовом канале и имеющей с ним по всей длине непосредственный контакт.

Недостатками вышеуказанной конструкции являются сложность изготовления системы жидкостного охлаждения, а также отсутствие охлаждения подшипниковых щитов и воздуха, циркулирующего внутри электрической машины.

Известны электрические машины с жидкостным охлаждением статора проточным хладагентом. В одном техническом решении цилиндрический агрегат с канальным осевым охлаждением установлен внутри статора (US 8378534, 2013), в другом - в статоре содержатся трубчатые радиальные каналы (RU 2439768, 2012), по которым протекает хладагент. Недостатком этих конструкций является то, что лобовые вылеты обмоток принудительно не охлаждаются, что снижает эффективность системы охлаждения.

Известен статор электрической машины с жидкостным охлаждением проточным хладагентом (RU 2546964, 2015), содержащий корпус, рубашку охлаждения с каналами для проточного хладагента, магнитопровод с рабочей обмоткой с ее лобовыми частями и теплоотводящий элемент, состоящий из цилиндра и отходящих от него в радиальном направлении тепловых труб, заполненных рабочей жидкостью.

Недостатками этой конструкции являются ограниченные функциональные возможности, сложность изготовления рубашки охлаждения с каналами и ее монтаж, низкий теплоотвод потерь, в силу того, что хладагент не омывает всю полость магнитопровода статора с обмоткой.

Во всех представленных выше аналогах и в других документах (RU 2226027, RU 2513042, RU 2539691, RU 2580951, RU 2609466, US 20120286595, US 20140265657, DE 102012019749, WO 2006106086, WO 2018088945) электродвигатель содержит ротор, вращающийся внутри статора, соответственно все конструктивные особенности представленных выше технических решений невозможно применить для конструкции электродвигателя с внешним ротором, вращающимся над статором.

Основным преимуществом конструкций электродвигателя с внешним ротором на постоянных магнитах является его меньшая масса по сравнению с массой традиционного электродвигателя с внутренним ротором. Так электродвигатель с внешним ротором серии EMRAX фирмы Enstroj (Словения) мощностью 200 кВт имеет массу 20 кг, а электродвигатель с внутренним ротором от 60 до 100 кг. Применение электродвигателей с внешним ротором сдерживалось отсутствием надежных цифровых электронных систем управления, которые обеспечивают переключение силовых обмоток электродвигателя для создания вращающегося магнитного поля.

Наиболее близким аналогом, выбранным в качестве прототипа, является электродвигатель с внешним ротором, статор которого имеет жидкостное охлаждение проточным хладагентом (US 20170018997, 2017), включающий вал, установленный в подшипниковой опоре, концентрично которому установлен магнитопровод статора с рабочей обмоткой и ее лобовыми вылетами. Система охлаждения статора включает цилиндрический агрегат охлаждения с каналами для проточного хладагента, наружная поверхность которого соприкасается с внутренней поверхностью статора.

Недостатком технического решения является то, что в конструкции электродвигателя для внешнего ротора используют расположенные внутри статора две опоры с подшипниками, внутренние обоймы которых установлены на вращающемся валу, жестко связанного с внешним ротором, что усложняет трансмиссию и снижает ее надежность. Используется специальный агрегат охлаждения цилиндрической формы, наружная поверхность которого не охватывает лобовые вылеты рабочих обмоток и ограничена внутренней поверхностью статора. Технологически затруднительно обеспечить полный контакт наружной поверхности цилиндра со статором, что снижает эффективность теплоотвода к трубкам с хладагентом, расположенным внутри агрегата охлаждения.

Техническая проблема, решаемая заявляемым изобретением, заключается в повышении надежности, энергоэффективности и минимизации тепловыделений в электродвигателе с внешним ротором и системой охлаждения статора.

Технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении надежности и увеличении КПД электродвигателя с внешним ротором и системой охлаждением статора.

Заявленный технический результат достигается за счет того, что электродвигатель с внешним ротором и системой охлаждения статора включает вал, установленный в подшипниковой опоре, концентрично которому установлен магнитопровод статора с рабочей обмоткой и ее лобовыми вылетами, причем вал выполнен статическим, электродвигатель снабжен полым цилиндром, внутри которого установлен магнитопровод статора, цилиндр содержит крышки, герметично соединенные с валом и соответствующими торцами цилиндра, и две внутренние перегородки, образующие полости, статический вал содержит каналы для подвода и отвода хладагента, каждый из которых сообщен с полостью цилиндра, расположенной со стороны подшипниковой опоры, а полость, расположенная со стороны свободного конца вала, снабжена штуцерами для подвода и отвода хладагента.

Существенность отличительных признаков заявляемого технического решения подтверждается тем, что совокупность всех конструктивных признаков, описывающая изобретение, достаточна для решения указанной технической проблемы и достижения заявленного технического результата.

А именно:

- выполнение вала статическим с одной подшипниковой опорой, расположенной сбоку от статора (вместо традиционных двух опор внутри статора), на внешней обойме подшипника которой расположен ротор с постоянными магнитами, позволяет уменьшить наружный диаметр статора, снизить его массу, повысить надежность электродвигателя и увеличить его ресурс;

- расположение магнитопровода статора внутри полого цилиндра, крышки которого герметично соединенные с валом и соответствующими торцами цилиндра, позволяет организовать эффективное конвективное охлаждение статического вала и магнитопровода статора без попадания жидкости в зазор между магнитопроводом и внешним ротором, а также защитить смазку подшипникового узла от взаимодействия с хладагентом, что обеспечивает повышение надежности и увеличении КПД электродвигателя;

- установка внутри цилиндра двух внутренних перегородок, образующих полости, позволяет организовать раздельный подвод хладагента в полости с лобовыми вылетами обмоток со стороны подшипниковой опоры и со стороны свободного конца вала, обеспечив тем самым конвективное охлаждения лобовых вылетов обмоток, при этом практически исчезает температурная неравномерность по длине магнитопровода, стабилизируется также температурное состояние подшипниковой опоры, что способствует обеспечению надежности электродвигателя;

- организация подвода и отвода хладагента к полостям цилиндра в виде каналов внутри статического вала и штуцеров, установленных в крышке цилиндра со стороны свободного конца вала, позволяет повысить надежность электродвигателя, так как каналы охлаждения предельно просты и отсутствуют прокладки на его вращающихся элементах.

Существенные признаки могут иметь развитие и продолжение - внутренние перегородки цилиндра могут быть выполнены перфорированными, образующими сообщенные между собой полости.

Выполнение внутренних перегородок перфорированными, образующими сообщенные между собой полости, позволяет ускорить процесс охлаждения магнитопровода путем интенсификации процесса теплопереноса от магнитопровода к жидкости, протекающей в пазах обмоток из-за неполного их заполнения, что способствует увеличению КПД электродвигателя.

Настоящее изобретение поясняется следующим подробным описанием электродвигателя с внешним ротором и системой охлаждения статора и его работы со ссылкой на фигуру, где изображен продольный разрез электродвигателя, а стрелками показано движение хладагента.

На чертеже приняты следующие обозначения

1 - вал;

2 - магнитопровод статора;

3 - лобовой вылет;

4 - лобовой вылет;

5 - цилиндр;

6 - крышка;

7 - крышка;

8 - канал охлаждения;

9 - канал охлаждения;

10 - полость у свободного конца вала;

11 - полость у подшипникового узла;

12 - полость цилиндра;

13 - штуцер;

14 - штуцер;

15 - выводные электропроводящие болты;

16 - перегородки;

17 - ротор;

18 - постоянные магниты;

19 - прокладка для герметизации вала с крышкой 6;

20 - прокладка для герметизации вала с крышкой 7;

21 - прокладка для герметизации цилиндра 5 с крышкой 6;

22 - прокладка для герметизации цилиндра 5 с крышкой 7;

23 - прокладка для герметизации штуцера 13 с крышкой 6;

24 - прокладка для герметизации штуцера 14 с крышкой 6;

25 - прокладка для герметизации выводного болта 15 с крышкой 6;

26 - подшипниковая опора.

Электродвигатель включает статический вал 1, установленный в подшипниковой опоре 26, концентрично которому установлен магнитопровод статора 2 с рабочей обмоткой и ее лобовыми вылетами 3 и 4. Электродвигатель снабжен полым цилиндром 5, внутри которого установлен магнитопровод статора 2. Цилиндр 5 содержит изоляционные крышки 6 и 7, герметично соединенные с валом 1 и соответствующими торцами цилиндра 5, и две внутренние перегородки 16, образующие полости 10, 11 и 12. Статический вал 1 содержит канал 8 для подвода хладагента в полость 11, расположенную со стороны подшипниковой опоры 26, и канал 9 для отвода хладагента из нее. Полость 10, расположенная со стороны свободного конца вала 1, снабжена штуцером 13 для подвода хладагента и штуцером 14 для его отвода. На внешней части подшипниковой опоры 26 расположен ротор 17 с постоянными магнитами 18. Крышка 6 имеет отверстие для вывода электропроводящих болтов 15 (на фигуре показан один выводной болт). Магнитопровод статора 2 выполнен из шихтованных в аксиальном направлении листов электротехнической стали.

Герметизация цилиндра 5 обеспечивается посредством резиновых прокладок: герметизация статического вала 1 с внешней и внутренней крышками 6 и 7 обеспечивается прокладками 19 и 20, герметизация крышек 6 и 7 цилиндра 5 с соответствующими торцами цилиндра 5 выполнена посредством прокладок 21 и 22, герметизация штуцеров 13 и 14 с внешней крышкой 6 выполнена посредством прокладок 23 и 24, герметизация выводного болта с внешней крышкой 6 посредством прокладки 25.

При использовании в конструкции электродвигателя перфорированных перегородок 16 площадь проходного сечения штуцера 13 выше значения эквивалентной площади канала 8 в статическом валу 1, что обеспечивает проток хладагента по пазам обмоток (коэффициент их заполнения меньше единицы) или по дополнительным каналам внутри статора при подводе хладагента к электродвигателю от одного источника.

Предложенное устройство работает следующим образом. При подключении выводного болта 15 к силовым выводам системы управления электродвигателя по обмотке электродвигателя начинает проходить ток, который создает магнитное поле магнитопровода статора 2. Это магнитное поле, взаимодействуя с магнитным полем возбуждения постоянных магнитов 18 ротора 17, образует электромагнитный момент, в результате чего ротор 17 начинает вращаться в подшипниковой опоре 26.

Отвод тепловых потерь, возникающих в магнитопроводе статора 2, из-за потерь на перемагничивании и вихревых токов в материале магнитопровода статора 2, а так же в обмотках, обусловленных их активным сопротивлением, обеспечивается по законам теплопереноса, при протекании хладагента под давлением по телу магнитопровода статора 2, обмотки и лобовых вылетов 3 и 4. Хладагент протекает по двум контурам:

- в первом контуре через входной штуцер 13 хладагент попадает в полость 10 цилиндра 5, в которой он охлаждает лобовой вылет 3 и торец магнитопровода статора 2, после этого хладагент под давлением выходит из полости 10 через выходной штуцер 14;

- во втором контуре через входной канал 8 охлаждения хладагент попадает в полость 11 цилиндра 5, в которой он охлаждает лобовой вылет 4 и торец магнитопровода статора 2, после хладагент под давлением выходит из полости 11 через выходной канал 9 охлаждения.

Чтобы исключить попадание хладагента в радиальный зазор между магнитопроводом статора 2 и ротором 17, на внешней части магнитопровода статора 2 расположен цилиндр 5, внешние и внутренние изоляционные крышки 6 и 7 которого герметично прилегают к статическому валу 1 и цилиндру 5. Хладагент не поступает в зазор и не создает дополнительного механического трения, он также не поступает в подшипниковую опору 26, тем самым не подвергая смешению подшипниковой смазки с хладагентом.

Цилиндр 5 выполнен из жесткого стекловолоконного материала с целью обеспечения механической прочности и минимизации потерь на вихревые токи. Герметизация внутренних полостей цилиндра от окружающей среды обеспечивается посредством резиновых прокладок 19, 20, 21, 22, 23, 24, 25.

При перфорированных перегородках 16 обеспечивается теплосъем от статора 2 также за счет протекания хладагента в пазах обмоток и каналах.

Заявляемое техническое решение позволяет реализовать электродвигатель с внешним ротором и конвективной системой охлаждения статора с надежной трансмиссией путем установки магнитопровода статора внутри герметичного цилиндра, упрощения конструкции каналов охлаждения, защиты смазки подшипниковой опоры от взаимодействия с хладагентом и стабилизации его температурного состояния.

Таким образом у электродвигателя с внешним ротором и системой охлаждения статора повышается надежность, энергоэффективность и минимизируется тепловыделение, увеличивается КПД на 1-2%, а также повышается плотность тока в обмотке, за счет того что хладагент омывает всю полость магнитопровода статора и его обмотки с лобовыми вылетами, при этом хладагент не поступает в радиальный зазор внешнего ротора, не создавая тем самым дополнительных потерь энергии на трение.


Электродвигатель с внешним ротором и системой охлаждения статора
Электродвигатель с внешним ротором и системой охлаждения статора
Источник поступления информации: Роспатент

Показаны записи 41-50 из 204.
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.82f8

Прямоточный воздушно-реактивный двигатель на твердом горючем и способ функционирования двигателя

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло....
Тип: Изобретение
Номер охранного документа: 0002565131
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8cf2

Зубчатое колесо

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах. Зубчатое колесо содержит обод с зубчатым венцом, ступицу, несущую диафрагму, жестко связанную с ободом и ступицей, и демпфирующий элемент, выполненный в виде лепесткового пластинчатого...
Тип: Изобретение
Номер охранного документа: 0002567689
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a339

Способ сжигания топливо-воздушной смеси и прямоточный воздушно-реактивный двигатель со спиновой детонационной волной

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике...
Тип: Изобретение
Номер охранного документа: 0002573427
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.02ec

Стенд для циклических испытаний газодинамических подшипников

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002587758
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2d20

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002579526
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3221

Способ функционирования турбореактивного двухконтурного двигателя летательного аппарата с выносными вентиляторными модулями

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002580608
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3f8b

Муфта составного ротора газогенератора газотурбинного двигателя

Муфта составного ротора газогенератора газотурбинного двигателя содержит средства для передачи крутящего момента и осевого сцепления двух соосных вращающихся колес в виде перемещающихся элементов, размещенных в кольцевых выемках, выполненных в цапфе центробежного колеса компрессора и цапфе...
Тип: Изобретение
Номер охранного документа: 0002584109
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5898

Насос-дозатор

Изобретение относится к системам подачи и дозирования рабочего тела с электроприводными насосами, в частности к системам топливоподачи и управления газотурбинных двигателей. Насос-дозатор содержит насос подачи рабочего тела с регулируемым электроприводом, включающим электродвигатель (ЭД), блок...
Тип: Изобретение
Номер охранного документа: 0002588315
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.713e

Способ определения тяги в полете турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДД и ТРДД с форсажной камерой сгорания ТРДДФ и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла. По замерам полетной...
Тип: Изобретение
Номер охранного документа: 0002596413
Дата охранного документа: 10.09.2016
Показаны записи 41-50 из 121.
27.03.2016
№216.014.c7e4

Устройство для чистки ствола орудия (варианты)

Группа изобретений относится к устройствам для обслуживания ствола орудия, а именно к устройствам для чистки ствола. Устройство содержит электродвигатель и планетарный редуктор, размещенные внутри чистящего ерша. Устройство также включает в себя энкодер, связанный с системой управления....
Тип: Изобретение
Номер охранного документа: 0002578919
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c977

Ротор электромеханического преобразователя энергии с постоянными магнитами (варианты)

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а...
Тип: Изобретение
Номер охранного документа: 0002578131
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2ff1

Датчик скорости изменения ускорения

Изобретение относится к информационно-измерительной технике и вибрационной технике и предназначено для использования в приборостроении и машиностроении. Датчик скорости изменения ускорения содержит ротор с постоянными магнитами, статор с магнитопроводом, измерительную обмотку, при этом...
Тип: Изобретение
Номер охранного документа: 0002580212
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.342d

Способ раскрутки-торможения колес шасси

Изобретение относится к системам привода шасси и касается предварительной раскрутки колес шасси при посадке и торможения после посадки. Перед посадкой каждое колесо шасси вращают с окружной скоростью, равной скорости самолета, с помощью установленных на них электрических машин, которые питают...
Тип: Изобретение
Номер охранного документа: 0002581996
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.34c4

Термоэмиссионный магнитопровод статора

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод...
Тип: Изобретение
Номер охранного документа: 0002581606
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35ab

Внутритрубное транспортное средство (варианты)

Группа изобретений относится к автономным устройствам для перемещения диагностического оборудования внутри трубопровода. Внутритрубное транспортное средство содержит полимерный приводной цилиндрический винт, установленный на приводном валу передаточного редуктора. За счет сцепления приводного...
Тип: Изобретение
Номер охранного документа: 0002581757
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.379b

Система защиты магнитоэлектрического генератора от короткого замыкания и способ управления системой

Изобретение используется в области электротехники и электромашиностроения. Технический результат: повышение эксплуатационного ресурса обмотки статора, повышение надежности и пожаробезопасности магнитоэлектрического генератора при его минимальных массогабаритных показателях. Система защиты...
Тип: Изобретение
Номер охранного документа: 0002582593
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b7c

Электростатический сепаратор

Изобретение относится к системам очистки воздуха с использованием электрического поля для поляризации частиц и материала и может использоваться в системах отопления, вентиляции и кондиционирования воздуха, автономных блоках фильтров или вентиляторах, а также в промышленных системах очистки...
Тип: Изобретение
Номер охранного документа: 0002583844
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cae

Интегрированный высокотемпературный стартер-генератор и способ управления им

Изобретение относится к электротехнике, а именно к устройствам запуска авиационного двигателя и электроснабжения бортовой системы самолета. Стартер-генератор, вал ротора которого выполнен единым с валом газотурбинного двигателя, причем на валу установлены постоянные магниты с чередующимися...
Тип: Изобретение
Номер охранного документа: 0002583837
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.412b

Акселерометр-тахогенератор

Изобретение относится к электрическим микромашинам, а именно к датчикам угловых ускорений (акселерометрам), предназначенным для измерения угловых ускорений контролируемых валов в устройствах автоматики и вычислительной техники. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002584576
Дата охранного документа: 20.05.2016
+ добавить свой РИД