×
20.04.2016
216.015.34c4

ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод статора содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат. Обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами, для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, во внутренней части статора расположен ротор. 4 ил.
Основные результаты: Термоэмиссионный магнитопровод статора, содержащий обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, отличающийся тем, что обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем электромеханического преобразователя энергии через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.
Реферат Свернуть Развернуть

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известна конструкция термоэмиссионного реактора-преобразователя с плоскими протяженными электрогенерирующими элементами с высокими выходными энергетическими характеристиками и большим заполнением активной зоны ядерным топливом (патент РФ №2030018, H01J 45/00, 27.02.1995 г.). Термоэмиссионный реактор-преобразователь содержит герметичный цилиндрический корпус, заполненный парами цезия. Внутри него размещены плоскопараллельные пластины с полостями для прокачки жидкометаллического теплоносителя, на которых жестко через изолирующий слой закреплены плоские протяженные коллекторы, а между ними помещены эмиттерные оболочки швеллерной формы боковыми рабочими поверхностями эквидистантно плоскостям коллекторов. Оболочки заполнены ядерным топливом. Коммутирующие проводники выполнены в виде гофрированных лент с чередованием участков для закрепления вдоль оболочек эмиттеров и свободных участков, расположенных между гофрами, с ортогональными отростками для соединения с коллекторами. Конструкция также содержит систему охлаждения коллекторов.

Недостатком этой конструкции является система охлаждения коллекторов, содержащая широкие полости, через которые прокачивается жидкометаллический теплоноситель, в плоских пластинах, на которых закреплены коллекторы. Другой не до конца решенной проблемой в ней является проблема отработки и испытания электрогенерирующих элементов и термоэмиссионного реактора-преобразователя в целом в лабораторных стендовых условиях с электронагревом. Она решена лишь частично, а именно в ее вакуумной части. Полномасштабные стендовые испытания с электронагревом в этой конструкции оказываются невозможными. Остается также проблема вывода газообразных осколков деления из ядерного топлива.

Известен термоэмиссионный электрогенерирующий канал активной зоны ядерного реактора (Грязнов Г.М., Пупко В.Я. ТОПАЗ-1 - советская космическая ядерно-энергетическая установка. Природа, 1991, №10, с. 29-36). Электрогенерирующий канал активной зоны ядерного реактора содержит последовательно соединенные электрогенерирующие элементы, содержащие источники тепла в виде тепловыделяющего элемента, оболочки которых являются катодами, и отделенные от них кольцевым зазором аноды, через изолирующие прокладки соединенные с корпусом электрогенерирующего канала, охлаждаемым жидкометаллическим теплоносителем, в котором кольцевой зазор между анодом и катодом промывается парами цезия, подаваемыми из цезиевого термостата с одного торца электрогенерирующего канала и сбрасываемыми в окружающую среду на другом торце электрогенерирующего канала.

Недостатками такого устройства являются расходная схема циркуляции рабочего тела электрогенерирующего канала цезия, относительно низкая эффективность преобразования энергии.

Наиболее близким по технической сущности к заявляемому устройству является термоэмиссионный преобразователь (патент США №5578886, US 08/190049, 18.02.1993 г.). Известное техническое решение содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, причем в аноде имеется по крайней мере несколько отверстий, через которые в зазор подается пар цезия из цезиевого термостата.

Недостатками этого решения являются наличие внешнего контура циркуляции пара цезия, подвод цезия к отверстиям анода в теплую фазу по каналам со стороны средств отвода тепла, пониженная эффективность преобразования энергии вследствие перегрева пара цезия относительно температуры насыщения при проходе по подводящим каналам.

Наиболее близким по технической сущности к заявляемому способу является способ диагностики теплового состояния турбогенераторов, реализованный в устройстве для диагностики теплового состояния электрической машины (авт. свид. СССР 855875, Н02К 15/00, 15.08.1981 г.), заключающийся в том, что посредством термочувствительных датчиков, размещенных на сердечнике статора турбогенератора, измеряют температуру, которую сравнивают с предварительно установленной температурой для соответствующих точек теплового контроля сердечника статора турбогенератора. При превышении температуры в одной из контролируемых точек по отношению к аварийной температуре в той же точке регулируют возбуждение турбогенератора путем изменения тока ротора, что, в свою очередь, приводит к изменению реактивной мощности турбогенератора. Изменение реактивной мощности влечет за собой изменение потерь в сердечнике статора, а следовательно, приводит к возникновению переходного теплового процесса в сердечнике статора турбогенератора. Информацию о результатах диагноза регистрируют.

Задача изобретения - расширение функциональных возможностей термоэмиссионного магнитопровода статора в составе электромеханических преобразователей энергии, возможность к подвозбуждению некоторых электромеханических преобразователей энергии (ЭМПЭ) (синхронная машина, машина постоянного тока), возможность регулирования интенсивности охлаждения статора ЭМПЭ, возможность определения температуры магнитопровода статора без датчика, благодаря введению на внешней стороне статора термоэмиссионный преобразователь энергии.

Техническим результатом является повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%, и при применении на роторе постоянных магнитов обеспечивается защита от их теплового размагничивания, а также защита от повышенной линейной токовой нагрузки электромеханических преобразователей энергии.

Поставленная задача решается и указанный результат достигается тем, что в термоэмиссионном магнитопроводе статора, содержащем обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, согласно изобретению обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем ЭМПЭ через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.

Поставленная задача также решается способом диагностики температуры магнитопровода статора, по которому с помощью термочувствительных датчиков, размещенных на магнитопроводе статора, измеряют температуру, которую сравнивают с допустимой областью значений температуры магнитопровода статора, в котором в отличие от прототипа диагностику температуры магнитопровода статора производят посредством термоэмиссионного преобразователя, состоящего из обогреваемого катода, отделенного от него зазором, заполненным парами цезия, охлаждаемого анода, электрически соединенного с подвозбудителем ЭМПЭ через амперметр и замкнутого на катоде, при этом по изменению тока судят о тепловом состоянии термоэмиссионного магнитопровода статора и производят его диагностику в режиме реального времени.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез термоэмиссионного магнитопровода статора, на фиг. 2 - продольный разрез термоэмиссионного магнитопровода статора, на фиг. 3 изображена структурная схема, на фиг. 4 показано как замыкаются аксиальные каналы.

Предложенное устройство (фиг. 1) содержит: ротор 1, магнитопровод статора 2, состоящий из пазов 3, в которые уложена обмотка 4. Магнитопровод статора 2 установлен в обогреваемый катод 5, зазор 6, заполненный парами цезия, охлаждаемый анод 7, трубки 8 для подачи паров цезия в зазор 6 из цезиевого термостата 9 (фиг. 2). Аксиальные каналы 10 установлены поверх охлаждаемого анода 7 и подсоединены к емкости хладагента 11, кроме того, обогреваемый катод 5 и охлаждаемый анод 7 электрически соединены с подвозбудителем ЭМПЭ 12 через амперметр 13 (фир. 3).

Предложенное устройство работает следующим образом: при вращении ротора 1, по магнитопроводу статора 2, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 4 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 4 начинает протекать ток, при этом создаются тепловые потери в обмотках 4, обусловленные током в обмотках 4 и их активными сопротивлениями, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 2, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 2 и удельными потерями материала магнитопровода статора 2, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 2. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при нагреве магнитопровода статора 2, тепловая энергия переходит на обогреваемый катод 5, в результате возникает термоэлектронной эмиссии с поверхности металла, обогреваемого катода 5. Электроны, преодолевая межэлектродное пространство в зазоре 6, заполненном парами цезия, попадают на поверхность охлаждаемого анода 7, создавая на нем избыток отрицательных зарядов и увеличивая его отрицательный потенциал. Протекание хладагента по аксиальным каналам 10, установленным поверх охлаждаемого анода 7 и подсоединенным к емкости хладагента 11, обеспечивает охлаждение охлаждаемого анода 7. Тем самым во внешней цепи возникает электрический ток, который идет на подвозбуждение ЭМПЭ 12 через амперметр 13. По показаниям амперметра 13 отслеживается охлаждение манитопровода статора 2, т.е. существует допустимая область значений силы тока, которая зависит от температуры магнитопровода статора 2. Если амперметр 13 показывает значения за пределами допустимой области, значит охлаждение манитопровода статора 2 осуществляется не в полном объеме. Это позволяет производить диагностику манитопровода статора 2 в режиме реального времени.

Кроме того, подвод паров цезия в зазор 6 обеспечивается посредством трубок 8 из цезиевого термостата 9.

Пример конкретной реализации способа диагностики температуры магнитопровода статора.

Термоэмиссионный магнитопровод статора генератора мощностью 30 кВт изготавливают путем прессовки электротехнической стали марки 2413, толщиной 0,5 мм, изолировка листов - оксидирование, в результате получают термоэмиссионный магнитопровод статора с длиной 210 мм, наружный диаметр 406 мм, внутренний диаметр 335 мм, число пазов 45. В обогреваемый катод, из тугоплавкого металла молибдена марки С52, толщиной 5 мм, поверх катода монтируют охлаждаемый анод, из тугоплавкого металла молибдена марки С52, толщиной 5 мм, посредством 6 клиньев из циклоолефинового сополимера, по окружности, толщиной 1 мм, в результате образовывается зазор. Для герметизации зазора с торцов термоэмиссионного магнитопровода статора монтируют пластинки, к одной из пластин монтируют трубки, которые соединены с цезиевым термостатом, цезиевый термостат монтирован с торца термоэмиссионного магнитопровода статора. На внешней стороне охлаждаемого анода монтированы аксиальные каналы диаметром 10 мм, по периметру окружности охлаждаемого анода, аксиальные каналы соединены к емкости хладагента. Кроме того, обогреваемый катод и охлаждаемый анод электрически соединены с подвозбудителем ЭМПЭ, через амперметр. В номинальном режиме температура термоэмиссионного магнитопровода статора составляет 80°С, выделяем допустимую область в +/-10°С, показания амперметра в этом случае будет 3 А, +/-0,25 А. При увеличении температуры на 20°С ток увеличивается на 0,5 А, при этом по изменению тока судят о тепловом состоянии термоэмиссионного магнитопровода статора, что позволяет производить его диагностику в режиме реального времени.

Итак, заявляемое изобретение позволяет расширить функциональные возможности термоэмиссионного магнитопровода статора, в составе электромеханических преобразователей энергии, в том числе возможность к самовозбуждению некоторых ЭМПЭ (синхронная машина, машина постоянного тока), возможность регулирования интенсивности охлаждения статора. ЭМПЭ, возможность определения температуры магнитопровода статора без датчика, благодаря введению на внешней стороне статора термоэмиссионный преобразователь энергии.

Термоэмиссионный магнитопровод статора, содержащий обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, отличающийся тем, что обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем электромеханического преобразователя энергии через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 141.
10.01.2013
№216.012.1a80

Линейный шаговый двигатель (варианты)

Изобретение относится к электротехнике, к линейным шаговым двигателям (ЛШД), и может быть использовано преимущественно в устройствах ввода - вывода. Технический результат состоит в расширении функциональных и технологических возможностей ЛШД и упрощении его конструкции за счет применения...
Тип: Изобретение
Номер охранного документа: 0002472276
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.28a8

Высокоскоростная магнитоэлектрическая машина с вертикальным валом

Изобретение относится к области электротехники и электромашиностроения и может быть использовано в высокоскоростных магнитоэлектрических машинах. Технический результат, достигаемый при использовании настоящего изобретения, состоит в расширении функциональных возможностей высокоскоростных...
Тип: Изобретение
Номер охранного документа: 0002475928
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3136

Ультрамелкозернистые алюминиевые сплавы для электротехнических изделий и способы их получения (варианты)

Изобретение относится к области получения алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения. Для повышения механической прочности и электрической проводимости в алюминиевых сплавах системы Al-Mg-Si формируют два типа ультрамелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002478136
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3ae4

Способ изготовления антифрикционного слоя вкладышей подшипников скольжения

Изобретение относится к обработке металлов давлением, в частности к созданию поверхностного слоя с особыми свойствами на металлических изделиях типа тел вращения с помощью обкатки, выглаживания, дорнования или виброобработки, и может быть использовано для изготовления и ремонта вкладышей...
Тип: Изобретение
Номер охранного документа: 0002480637
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.40f8

Износостойкий композиционный материал с эвтектическим инфильтрантом

Изобретение относится к порошковой металлургии, а именно к композиционным материалам для вставок буровых шарошечных долот. Композиционный материал содержит каркас из карбида титана и инфильтрант - сплав эвтектического состава с краевым углом смачивания менее 90°, содержащий кобальт 12-20%; хром...
Тип: Изобретение
Номер охранного документа: 0002482202
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.50ca

Способ получения ультрамелкозернистой заготовки лопатки гтд из титановых сплавов

Изобретение относится к области металлургии, а именно к деформационно-термической обработке титановых сплавов, и может быть использовано в авиадвигателестроении при получении заготовок лопаток газотурбинных двигателей (ГТД). Способ получения заготовки лопатки ГТД с ультрамелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002486275
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.595d

Аэродинамическое транспортное средство и способ его управления

Изобретение относится к области транспортной техники, в частности к транспортным средствам, работающим на энергии сжатого воздуха. Аэродинамическое транспортное средство содержит компрессор, соединенный с пневмотрубой, грузовую или пассажирскую платформу, электродвигатели, установленные в...
Тип: Изобретение
Номер охранного документа: 0002488498
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6195

Образец для испытания диффузионного соединения листовых заготовок на сдвиг, способ его изготовления и испытания

Изобретение относится к испытательной технике. Образец содержит две соединенные внахлест пластины, образующие диффузионное соединение и имеющие совмещенные с ними накладки, расположенные с противоположных от соединения сторон. Сумма толщин первой пластины и совмещенной с ней первой накладки...
Тип: Изобретение
Номер охранного документа: 0002490613
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.696e

Способ определения экологического состояния водоемов

Измеряют гидробиологические показатели - индекс сапробности по Пантле и Букку в модификации Сладечек. Одновременно измеряют гидрохимические показатели - водородный показатель, химическое потребление кислорода, концентрация растворенного кислорода и электропроводность. Рассчитывают сводный...
Тип: Изобретение
Номер охранного документа: 0002492641
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7a5d

Способ изготовления моноблочного лопаточного диска

Изобретение может быть использовано при изготовлении моноблочного лопаточного диска (блиска), преимущественно, для ротора газотурбинного двигателя. Получают лопатку с выступом, параметры которого обеспечивают присоединение к диску посредством линейной сварки трением. На лопатке выполняют...
Тип: Изобретение
Номер охранного документа: 0002496987
Дата охранного документа: 27.10.2013
Показаны записи 1-10 из 191.
10.01.2013
№216.012.1a80

Линейный шаговый двигатель (варианты)

Изобретение относится к электротехнике, к линейным шаговым двигателям (ЛШД), и может быть использовано преимущественно в устройствах ввода - вывода. Технический результат состоит в расширении функциональных и технологических возможностей ЛШД и упрощении его конструкции за счет применения...
Тип: Изобретение
Номер охранного документа: 0002472276
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.28a8

Высокоскоростная магнитоэлектрическая машина с вертикальным валом

Изобретение относится к области электротехники и электромашиностроения и может быть использовано в высокоскоростных магнитоэлектрических машинах. Технический результат, достигаемый при использовании настоящего изобретения, состоит в расширении функциональных возможностей высокоскоростных...
Тип: Изобретение
Номер охранного документа: 0002475928
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3136

Ультрамелкозернистые алюминиевые сплавы для электротехнических изделий и способы их получения (варианты)

Изобретение относится к области получения алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения. Для повышения механической прочности и электрической проводимости в алюминиевых сплавах системы Al-Mg-Si формируют два типа ультрамелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002478136
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3ae4

Способ изготовления антифрикционного слоя вкладышей подшипников скольжения

Изобретение относится к обработке металлов давлением, в частности к созданию поверхностного слоя с особыми свойствами на металлических изделиях типа тел вращения с помощью обкатки, выглаживания, дорнования или виброобработки, и может быть использовано для изготовления и ремонта вкладышей...
Тип: Изобретение
Номер охранного документа: 0002480637
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.40f8

Износостойкий композиционный материал с эвтектическим инфильтрантом

Изобретение относится к порошковой металлургии, а именно к композиционным материалам для вставок буровых шарошечных долот. Композиционный материал содержит каркас из карбида титана и инфильтрант - сплав эвтектического состава с краевым углом смачивания менее 90°, содержащий кобальт 12-20%; хром...
Тип: Изобретение
Номер охранного документа: 0002482202
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.50ca

Способ получения ультрамелкозернистой заготовки лопатки гтд из титановых сплавов

Изобретение относится к области металлургии, а именно к деформационно-термической обработке титановых сплавов, и может быть использовано в авиадвигателестроении при получении заготовок лопаток газотурбинных двигателей (ГТД). Способ получения заготовки лопатки ГТД с ультрамелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002486275
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.595d

Аэродинамическое транспортное средство и способ его управления

Изобретение относится к области транспортной техники, в частности к транспортным средствам, работающим на энергии сжатого воздуха. Аэродинамическое транспортное средство содержит компрессор, соединенный с пневмотрубой, грузовую или пассажирскую платформу, электродвигатели, установленные в...
Тип: Изобретение
Номер охранного документа: 0002488498
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5d55

Способ получения износостойкого покрытия на основе интерметаллида системы ti-al

Изобретение относится к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий и может быть использовано в машиностроении для повышения надежности и деталей машин и инструмента. Обрабатываемую деталь размещают в вакуумной камере установки, содержащей плазменный источник с...
Тип: Изобретение
Номер охранного документа: 0002489514
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.6195

Образец для испытания диффузионного соединения листовых заготовок на сдвиг, способ его изготовления и испытания

Изобретение относится к испытательной технике. Образец содержит две соединенные внахлест пластины, образующие диффузионное соединение и имеющие совмещенные с ними накладки, расположенные с противоположных от соединения сторон. Сумма толщин первой пластины и совмещенной с ней первой накладки...
Тип: Изобретение
Номер охранного документа: 0002490613
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.696e

Способ определения экологического состояния водоемов

Измеряют гидробиологические показатели - индекс сапробности по Пантле и Букку в модификации Сладечек. Одновременно измеряют гидрохимические показатели - водородный показатель, химическое потребление кислорода, концентрация растворенного кислорода и электропроводность. Рассчитывают сводный...
Тип: Изобретение
Номер охранного документа: 0002492641
Дата охранного документа: 20.09.2013
+ добавить свой РИД