×
14.08.2019
219.017.bf66

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ МАГНИЙ-НЕОДИМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при производстве чугунов и сталей. Способ включает введение в жидкий магний смеси фторида неодима с флюсом. В качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорида магния и фторида кальция. Расплавляют полученную смесь и осуществляют перемешивание со скоростью от 150 до 350 об/мин при температуре от 710 до 770°С и времени выдержки от 20 до 40 мин с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры. Осуществляют отстаивание, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав. Техническим результатом является повышение степени извлечения неодима в магниевую лигатуру. 5 пр.

Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при производстве чугунов и сталей.

Известен электролитический способ получения лигатур магний-неодим (Ахмедов М.Ч. Электролитическое приготовление лигатур алюминия и магния с неодимом / М.Ч. Ахмедов, В.А. Лебедев // Инновации в материаловедении и металлургии: материалы IV Международной интерактивной научно-практической конференции. Екатеринбург: Изд-во Урал, ун-та, 2015. С. 127-130.), включающий электролиз расплавленных солей, содержащих NdCl3 в расплаве KCl-NaCl, при катодной плотности тока равной 0,10 А/см2 для обоих электродов. Электролиз проводили с нерастворимым анодом из графита при температуре 738°С. Количество пропущенного электричества соответствовало получению лигатур, содержащих 30 вес. % неодима.

Недостатки данного технического решения также связаны с низким процентом перевода неодима в катодный продукт, непостоянством его состава, сложностью промышленного синтеза безводного гигроскопичного NdCl3, выделением на аноде газообразного хлора.

Известен способ получения магниевых сплавов с редкоземельными металлами (патент СССР №66689722, опубликован 7.05.1960). Способ включает ввод в расплавленный магний при температуре от 700 до 800°С редкоземельных металлов из сплава солей одного из следующих составов, мас. %: 1) от 50 до 65 фторидов редкоземельных металлов, от 20 до 30% хлористого калия, от 15 до 20% хлористого натрия и от 1 до 2% фтористого кальция; 2) от 50 до 75% фторидов редкоземельных металлов, от 20 до 30 хлористого лития и от 8 до 15 фтористого калия. Фтористые соли вводят в расплав порциями при тщательном перемешивании, после чего расплав выдерживают от 10 до 30 минут и затем разливают в чушки. Плавку ведут под слоем флюса одного из следующих составов мас. %: 1) от 47 до 51% CaCl2, от 26 до 29% BaCl2, от 19 до 21% NaCl и от 2 до 5% CaF2. Усвоение редкоземельных металлов, вводимых из расплава солей, составляет от 65 до 80%.

Недостатком способа является невысокое извлечение редкоземельных металлов в магниевый сплав, причем существует большая вероятность загрязнения сплава за счет попадания солевых включений в отливку в процессе разливки сплава.

Известен способ получения чушкового сплава магний-неодим-цирконий (авторское свидетельство СССР №1737917, опубликован 27.10.1995), включающий введение в расплав магния оксида неодима в смеси с флюсом, выдержку, отстаивание, отделение донного осадка, введение магниево-циркониевой лигатуры, при этом введение оксида неодима осуществляют в присутствии фторида неодима. Среднее извлечение неодима в готовый сплав составляет 83,7%.

Недостатком способа является невысокое извлечение неодима в магниевый сплав.

Известен способ получения лигатуры магний-цирконий-редкоземельные металлы (патент РФ №2234552, опубликован 20.08.2004), включающий ввод фторцирконата калия в расплав хлоридов калия и натрия при температуре расплава от 680 до 700°С, затем ввод хлорида редкоземельного металла для проведения полной обменной реакции между фторцирконатом калия и хлоридом редкоземельного металла, после чего подают порцию магния, затем сливают соли через 30 мин, а в полученную лигатуру вводят вторую порцию магния в количестве, обеспечивающем содержание циркония 1,5-35%, редкоземельных металлов 3,5-35%, магния остальное.

Недостатком способа является невысокое извлечение восстанавливаемого металла в магниевую лигатуру. А также использование в солевой смеси хлоридов редкоземельных металлов. Известно, что хлориды многих редкоземельных металлов характеризуются нестабильностью на воздухе, и при хранении на воздухе способны набирать влагу.

Известен способ получения чушкового сплава магний-неодим-цирконий (авторское свидетельство СССР №1678075, опубликован 27.11.1995), принятый за прототип, включающий ввод в жидкий магний смеси фторида неодима с флюсом из хлоридов щелочных и щелочноземельных элементов в соотношении 2:1 и магнийциркониевой лигатуры, перемешивание и отстаивание, при этом в смеси поддерживают соотношение между фторидом неодима и хлоридом магния 100:1-4, причем флюс используют в виде гранул размером от 0,4 до 2,5 мм. В качестве флюса используют отработанный электролит магниевых электролизеров состава, % мас.: хлорид магния от 4 до 6, хлорид натрия от 8 до 18, хлорид калия от 72 до 87.

Недостатком способа является невысокий переход неодима в лигатуру.

Техническим результатом изобретения является повышение степени извлечения неодима в магниевую лигатуру.

Технический результат достигается тем, что в качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорид магния и фторид кальция, перемешивание проводят со скоростью от 150 до 350 об/мин, при температуре от 710 до 770°С, и времени выдержки от 20 до 40 мин, с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Способ осуществляется следующим образом. Предварительно в реакционный тигель загружают магний и расплавляют его в плавильной печи, а затем вводят смесь фторида неодима с флюсом, в качестве которого используют хлорид калия, хлорид натрия, хлорид кальция, хлорид магния и фторид кальция. После ввода солевой смеси проводят перемешивание расплава со скоростью от 150 до 350 об/мин. Проведение полной обменной реакции осуществляют при температуре от 710 до 770°С, и времени выдержки от 20 до 40 мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Выбранный состав солевой смеси для получения лигатуры магний-неодим отвечает предъявляемым требованиям к флюсу, применяемому при плавке магния и его сплавов. Компоненты, входящие в состав солевой смеси, имеют низкую температуру плавления, низкие значения вязкости и летучести, а образующиеся в результате реакции магниетермического восстановления соединения легко удаляются из расплава. Хлориды калия, натрия, кальция и магния служат средой для протекания процесса металлотермического восстановления неодима. Также хлориды калия, натрия, кальция и магния выполняют функцию защитной основы флюса, задачей которого является снижение потерь металла от окисления. Кроме того, в приведенной смеси хлоридов, хорошо растворяется продукт, металлотермической реакции, а именно тугоплавкий фторид магния, который может покрывать частицы фторида неодима в ходе протекания реакции и, в результате чего, тормозить реакцию восстановления неодима. Фторид кальция в солевую смесь добавляют для исключения грануляции полученной лигатуры магний-неодим.

Металлотермическая реакция расплавленных солей и магния осуществляется при температуре от 710 до 770°С. Заданный диапазон температур, при котором проводится металлотермическая реакция восстановления, объясняется высоким выходом неодима. С понижением температуры ниже 710°С не достигается заявленный технический результат, а именно не удается достигнуть высокого извлечения неодима в магниевую лигатуру. При повышении температуры выше 770°С увеличиваются безвозвратные потери магния и неодима.

Время протекания процесса восстановления неодима из солевой смеси задано из диапазона от 20 до 40 мин. Заданный диапазон времени выдержки, объясняется высоким выходом неодима. При времени выдержки менее 20 минут не достигается заявленный технический результат, а при времени выдержки более 40 минут увеличиваются безвозвратные потери магния и неодима.

Перемешивание расплава со скоростью от 150 до 350 об/мин проводят с целью увеличения скорости протекания полной обменной реакции между расплавленными солями и магнием. При скорости перемешивания менее 150 об/мин не достигается эффективное перемешивание расплава, в этом случае процесс восстановления характеризуется малой скорости диффузии, что приводит к низкому извлечению неодима. При скорости перемешивания более 350 об/мин могут повышаться безвозвратные потери магния. Также путем перемешивания достигается требуемая однородность химического состава получаемой лигатуры магний-неодим.

Способ поясняется следующими примерами.

Пример 1. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 710°С, времени выдержки 20 мин и перемешивании со скоростью 150 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру 96,4% от исходного содержания при загрузке.

Пример 2. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 750°С, времени выдержки 30 мин и перемешивании со скоростью 200 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру 99,6% от исходного содержания при загрузке.

Пример 3. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 770°С, времени выдержки 40 мин и перемешивании со скоростью 150 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру 96,8% от исходного содержания при загрузке.

Кроме того, приведены примеры реализации предлагаемого способа, при технологических параметрах, взятых за пределами предлагаемых диапазонов.

Пример 4. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После расплавления смеси солей проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 700°С, времени выдержки 15 мин и перемешивании со скоростью 50 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия не обеспечивают качественный переход неодима в лигатуру.

Пример 5. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. После расплавления смеси солей проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 800°С, времени выдержки 45 мин и перемешивании со скоростью 400 об/мин после проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру, однако плавка характеризуется высокими безвозвратными потерями магния и неодима.

Таким образом, как показано в описании, в предлагаемом техническом решении созданы технологические условия для восстановления неодима из его фторида с получением слитков лигатуры магний-неодим с мелкозернистой структурой.

Способ получения лигатуры магний-неодим, включающий введение в жидкий магний смеси солей, состоящей из фторида неодима и флюса, расплавление указанной смеси, перемешивание жидкого магния с расплавом солей, отстаивание и разливку, отличающийся тем, что в качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорида магния и фторида кальция, перемешивание проводят со скоростью от 150 до 350 об/мин при температуре от 710 до 770°С и времени выдержки от 20 до 40 мин с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 204.
13.01.2017
№217.015.815c

Устройство для бурения горных пород

Изобретение относится к горной промышленности и может быть использовано для бурения скважин в рыхлых, слабо-связных и средне-твердых горных породах, а также для посадки свай при строительстве. Устройство содержит желонку, механизм ударного действия, элемент подвеса, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002601877
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8179

Способ обогащения и переработки железных руд

Изобретение относится к обогащению и переработке железных руд и может быть использовано в горнорудной и металлургической промышленности. Способ обогащения и переработки железных руд включает измельчение руды, магнитную сепарацию. Исходную руду измельчают и подвергают низкоинтенсивной магнитной...
Тип: Изобретение
Номер охранного документа: 0002601884
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81a0

Шагающее устройство для подводной добычи полезных ископаемых

Изобретение относится к горному делу, в частности к устройствам для подводной добычи твердых полезных ископаемых. Устройство может быть использовано также для геологоразведочных изысканий, прокладки газо- и нефтепроводов, освоения торфяных месторождений. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002601880
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.830f

Способ получения топливных брикетов

Изобретение раскрывает способ получения топливных брикетов, включающий смешение углеродсодержащих материалов и их формование, при этом смешивают отходы деревообработки, продукты пылеулавливания процессов деревообработки и сланцепереработки. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002601743
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8391

Комбинированный способ получения судовых высоковязких топлив и нефтяного кокса

Изобретение раскрывает комбинированный способ получения судовых высоковязких топлив и нефтяного кокса, включающий использование легкого и тяжелого газойлей коксования, характеризующийся тем, что при перегонке нефти выделяют фракцию вакуумного газойля, 95% которого выкипает в пределах от 350 до...
Тип: Изобретение
Номер охранного документа: 0002601744
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83f4

Способ подготовки тяжелой нефти к переработке

Изобретение относится к способу подготовки тяжелой нефти к переработке, включающему эмульгирование нефтепродукта путем интенсивного кавитационного воздействия. Причем до эмульгирования тяжелую нефть обрабатывают в магнитном поле с помощью неодимовых магнитов до снижения вязкости, а затем...
Тип: Изобретение
Номер охранного документа: 0002601747
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.88ea

Способ подготовки шихты в глиноземном производстве

Изобретение может быть использовано в цветной металлургии для приготовления шихты при производстве глинозема из низкокачественного алюмосиликатного сырья. Способ подготовки шихты включает измельчение алюмосиликатного сырья на содовом растворе в мельнице, гидроциклонирование пульпы по классу...
Тип: Изобретение
Номер охранного документа: 0002602564
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.899a

Способ возведения закладочного массива

Изобретение относится к горной промышленности и может быть использовано при подземной разработке полезных ископаемых преимущественно в условиях криолитозоны (в многолетнемерзлых породах) системами с закладкой выработанного пространства при формировании закладочного массива. Техническим...
Тип: Изобретение
Номер охранного документа: 0002602565
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.96a2

Стенд для исследования энергообмена при сдвиге

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца...
Тип: Изобретение
Номер охранного документа: 0002608695
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.a54d

Способ переработки железомарганцевых конкреций

Изобретение относится к цветной металлургии, в частности к переработке железомарганцевых конкреций для получения кобальта, меди, никеля, марганца, других металлов и их соединений. Способ включает операции измельчения, сульфатизирующего обжига и выщелачивания огарка. При этом обжиг осуществляют...
Тип: Изобретение
Номер охранного документа: 0002607873
Дата охранного документа: 20.01.2017
Показаны записи 11-20 из 48.
20.02.2016
№216.014.ce1f

Способ монтажа катодной секции алюминиевого электролизера

Изобретение относится к области первичной металлургии цветных металлов, а именно электролитического получения алюминия, и может быть использовано при монтаже катодной секции алюминиевого электролизера. Сущность способа заключается в том, что в паз угольного блока на слой углеродсодержащего...
Тип: Изобретение
Номер охранного документа: 0002575524
Дата охранного документа: 20.02.2016
20.06.2016
№217.015.033c

Способ получения лигатуры алюминий-скандий-иттрий

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-скандий-иттрий включает приготовление флюса, содержащего смесь солей...
Тип: Изобретение
Номер охранного документа: 0002587700
Дата охранного документа: 20.06.2016
20.05.2016
№216.015.3e97

Устройство для определения содержания глинозема в электролите алюминиевого электролизера

Изобретение относится к электролитическому способу получения алюминия. Технический результат - повышение точности измерений и оперативности определения концентрации глинозема. Устройство для определения концентрации глинозема в электролите алюминиевого электролизера содержит автономный источник...
Тип: Изобретение
Номер охранного документа: 0002584631
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.444a

Токоподвод обожженного анода алюминиевого электролизера

Изобретение относится к токоподводу обожженного анода алюминиевого электролизера. Токоподвод содержит токоподводящую штангу, траверсу, удерживающую токоподводящие ниппели, обеспечивающую распределение электрического тока между ними, при этом токоподводящие ниппели выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002585601
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46e3

Способ укрытия анодного массива

Изобретение относится к способу укрытия анодного массива при производстве алюминия электролитическим способом в алюминиевом электролизере. Способ включает загрузку криолит-глиноземной шихты, состоящей из смеси дробленого электролита и глинозема, на поверхность анодного массива в два слоя, при...
Тип: Изобретение
Номер охранного документа: 0002586184
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.785d

Способ разложения алюминатных растворов при переработке нефелинового сырья

Изобретение относится к области химии и цветной металлургии и может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов, методом спекания. Предложенный способ включает деление раствора после первой стадии обескремнивания на содощелочную и...
Тип: Изобретение
Номер охранного документа: 0002599295
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.830f

Способ получения топливных брикетов

Изобретение раскрывает способ получения топливных брикетов, включающий смешение углеродсодержащих материалов и их формование, при этом смешивают отходы деревообработки, продукты пылеулавливания процессов деревообработки и сланцепереработки. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002601743
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.871e

Способ получения порошка диборида титана

Изобретение относится к получению порошка диборида титана. Способ включает приготовление мокрой реакционной смеси исходных титансодержащих, борсодержащих компонентов и восстановителя в виде углеродсодержащих компонентов, сушку смеси и карботермическое восстановление в реакционной смеси при...
Тип: Изобретение
Номер охранного документа: 0002603407
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.88ea

Способ подготовки шихты в глиноземном производстве

Изобретение может быть использовано в цветной металлургии для приготовления шихты при производстве глинозема из низкокачественного алюмосиликатного сырья. Способ подготовки шихты включает измельчение алюмосиликатного сырья на содовом растворе в мельнице, гидроциклонирование пульпы по классу...
Тип: Изобретение
Номер охранного документа: 0002602564
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.ab48

Способ разложения алюминатных растворов

Изобретение может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов. Разложение алюминатного раствора выполняют путём карбонизации газами, содержащими СО, при температуре от 20 до 40°С при начальной концентрации каустической щёлочи в растворе...
Тип: Изобретение
Номер охранного документа: 0002612288
Дата охранного документа: 06.03.2017
+ добавить свой РИД