×
05.04.2019
219.016.fd78

ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройству для генерации импульсных нейтронных потоков. В устройстве предусмотрен импульсный источник напряжения, подключенный к двум идентичным диодам для ускорения протонов, размещенным внутри рабочего вакуумного объема напротив друг друга, электроды которых представляют собой сектора частично прозрачной сферы, связанные определенными соотношениями. Оба диода имеют общую ось симметрии с магнитной ловушкой, охватывая ее, а между каждым анодом и магнитной ловушкой симметрично ее центру размещены две идентичные фокусирующие катушки с заданными индуктивностью и геометрией, подключенные к генератору импульса тока. При этом блок запуска устройства и синхронизации соединен с генераторами импульсов высокого напряжения и импульсов тока. Обе фокусирующие катушки могут быть размещены в оболочках из изоляционного материала, на поверхности которых расположены изолированные друг от друга вставки из металла с большим коэффициентом электронной эмиссии. Прозрачные аноды могут насыщаться водородом со стороны их внутренних поверхностей. Техническим результатом является увеличение коэффициента полезного действия импульсного генератора термоядерных нейтронов и расхода нуклидов тяжелого водорода и улучшение условий компенсации объемного заряда ускоренных протонов. 5 з.п. ф-лы, 4 ил.

Предлагаемое изобретение относится к области нейтронной техники, конкретно, к устройствам для генерации нейтронов при взаимодействии нуклидов тяжелого водорода и может быть использовано, как элемент систем дистанционного радиационного контроля, имитатор нейтронных полей термоядерного реактора и других ядерных устройств, работающих в импульсно- периодическом режиме.

В работе [1], описан общий принцип генерации термоядерных нейтронов в плазменных системах, при реализации которого накачка энергии в плазму, содержащую нуклиды тяжелого водорода, осуществляется в импульсно- периодическом режиме с помощью мощного лазерного излучения или потоков ускоренных ионов или электронов.

Для повышения эффективности генерации нейтронов в подобных импульсных плазменных системах можно использовать идею магнито-инерционного удержания плазмы. Для этого наиболее перспективным средством формирования магнитного поля представляется пробочная ловушка Будкера - Поста с двумя симметрично расположенными идентичными катушками с токами одинаковой направленности в которой могут осуществляться термоядерные реакции с генерацией нейтронов, описанная в работах [2-3].

Наиболее близким техническим решением по отношению к заявляемому является импульсная плазменная система, способная реализовать, по мнению ее авторов, магнито- инерциальный термоядерный синтез в плазме, образуемой при фокусировке мощного лазерного излучения на твердотельную мишень, содержащую изотопы тяжелого водорода [4].

Магнитное поле в области нагреваемой плазмы также формируется с помощью ловушки Будкера - Поста. Это техническое решение может быть выбрано в качестве прототипа.

Основным его недостатком является использование твердотельной плазмообразующей мишени. Это приводит к затруднениям осуществления термоядерной реакции в импульсно- периодическом режиме, а также к высокому расходу трития и дейтерия.

Техническим результатом предлагаемого устройства является создание условий для эффективной генерации нейтронов в импульсно-периодическом режиме и уменьшении расхода нуклидов тяжелого водорода.

Этот результат достигается тем, что в прототип, содержащий магнитную ловушку в виде системы из двух, соосно расположенных на расстоянии d друг от друга, одинаковых катушек с индуктивностью L1 и с радиусом а, подключенных к генератору импульсов тока, введены инжектор изотопов тяжелого водорода с поперечной апертурой h, направленный в сторону центра магнитной ловушки перпендикулярно ее оси симметрии, с подключенным к нему блоком запуска и синхронизации, а также импульсный источник напряжения, подключенный к двум идентичным диодам для ускорения протонов, размещенным напротив друг друга и состоящих из анода в виде сектора сферы радиуса RA с коэффициентом прозрачности 0,85≤κ≤0,95 и заземленного катода в виде сектора сферы радиуса RK, симметрично охватывающего анод, при этом радиусы RA и RK удовлетворяют условию:

таким образом, что каждый из них находится внутри телесного угла

где параметр p=d/2а- выбирается в пределах

между каждым анодом и магнитной ловушкой симметрично ее центру размещены две идентичные фокусирующие катушки с индуктивностью L2 и радиусом Rф≈Rк(1+p2)-1/2 на расстоянии Н≈2Rкp(1+p2)-1/2 от друг от друга, также подключенные к генератору импульса тока, а блок запуска устройства и синхронизации соединен с генераторами импульсов высокого напряжения и импульсов тока, снабженного накопительной емкостью С, при этом на значение С и на индуктивности L1 и L2 накладываются условия:

где М - масса протона, е - элементарный электрический заряд, μ0 - магнитная проницаемость вакуума, U0 - максимально допустимое значение амплитуды импульса ускоряющего напряжения на диодных зазорах при заданных значениях RA и RK, U - напряжение зарядки емкости С, w1 и w2 - числа витков соответственно каждой из катушек магнитной ловушки и каждой из фокусирующих катушек.

Фокусирующие катушки могут быть размещены в оболочках из изоляционного материала, на поверхности которых расположены изолированные друг от друга вставки из металла с большим коэффициентом электронной эмиссии для улучшения условий компенсации объемного заряда протонов.

Аноды насыщены изотопами тяжелого водорода со стороны их внутренних поверхностей.

На фиг. 1 представлена схема расположения элементов импульсного генератора термоядерных нейтронов с инжектором изотопов тяжелого водорода. Она содержит следующие позиции: 1 - герметичный корпус рабочего объема генератора нейтронов, 2 - изоляционные электрические вводы, 3 - фокусирующие катушки, 4 - инжектор, 5 - катушки магнитной ловушки, 6 - катод, 7 - анод, 8 - вакуумный насос, 9 - блоком запуска и синхронизации, 10 - генератор импульса тока, 11 - генератор импульсов высокого напряжения.

Один из вариантов реализации импульсного инжектора изотопов тяжелого водорода может представлять собой лазерный источник ионов с плазмообразующей мишенью, насыщенной тяжелым водородом с конической полостью, ось которой направлена к центру магнитной ловушки. Для обеспечения подвода к пушке лазерного излучения в корпусе устройства предусмотрено герметичное оптическое окно.

На фиг. 2 представлена схема расположения элементов импульсного генератора термоядерных нейтронов с лазерным источником ионов с плазмообразующей мишенью. Она содержит следующие позиции: 1 - герметичный корпус рабочего объема генератора нейтронов, 2 - изоляционные электрические вводы, 3 - фокусирующие катушки, 4 - мишень, 5 - катушки магнитной ловушки, 6 - катод, 7 - анод, 8 - вакуумный насос, 9 - блоком запуска и синхронизации, 10 - генератор импульса тока, 11 - генератор импульсов высокого напряжения, 12 - лазер, 13 - линза, 14 - окно.

Другой вариант реализации импульсного инжектора изотопов тяжелого водорода может представлять собой импульсный плазменный ускоритель, например «рельсотрон».

На фиг. 3 представлена схема расположения элементов импульсного генератора термоядерных нейтронов с плазменным ускорителем. Она содержит следующие позиции: 1-герметичный корпус рабочего объема генератора нейтронов, 2-изоляционные электрические вводы, 3-фокусирующие катушки, 4-плазменный ускоритель, 5-катушки магнитной ловушки, 6-катод, 7-анод, 8-вакуумный насос, 9-блоком запуска и синхронизации, 10-генератор импульса тока, 11-генератор импульсов высокого напряжения, 12-блок питания и запуска плазменного ускорителя, 13-хранилище дейтерий- тритиевой смеси.

Для ускорения процесса нагрева плазмы при передаче энергии от ускоренных протонов электронам устройство может дополнительно содержать генератор потока газа с большим порядковым номером в таблице Менделеева (например ксенона или паров йода). При этом концентрация электронов в ловушке может быть увеличена почти на 2 порядка.

Устройство работает следующим образом.

От блока управления подается сигнал на запуск импульсного инжектора изотопов дейтерия и (или) трития и образуется струя этих изотопов, направленная в сторону магнитной ловушки. Время непрерывной генерации направленного потока изотопов тяжелого водорода составляет примерно неск. мкс. Одновременно осуществляется запуск импульсного генератора тока и формирование магнитного поля в рабочем объеме генератора. За несколько десятков не до достижения максимального значения индукции магнитного поля происходит запуск импульсного источника высокого напряжения, в качестве которого может быть использована линия Блюмляйна или генератор Аркадьева- Маркса. Длительность высоковольтного импульса U(t) при этом может лежать в диапазоне (50-100) нс.

У поверхности катода, а также у металлических вставок на оболочках фокусирующих катушек создается сильное электрическое поле, обеспечивающее условия для эффективной эмиссии электронов, ускоряемых к аноду и осциллирующих в прилегающей к нему области с образованием виртуального катода. Под действием электронной бомбардировки анодного электрода происходит его нагрев, десорбция тяжелого водорода из области насыщения, образование прианодной плазмы, извлечение из нее нуклидов водорода и их ускорение в сторону виртуального катода к магнитной ловушке.

Из решения самосогласованного уравнения Пуассона получается следующее выражение для возможной приближенной зависимости суммарного тока протонов, рассеиваемых в плазме, внутри магнитной ловушки и обеспечивающих ее нагрев:

где IA - ток Альвена, m, М - соответственно массы электрона и протона, с-скорость света.

Согласно представленным схемам, на катушки 3 и 5 подаются импульсы тока I1,2(t) которые можно аппроксимировать синусоидами, с амплитудами

Для обеспечения магнитной локализации ускоренных дейтронов в объеме ловушке в поперечном направлении необходимо, чтобы максимальный ларморовский радиус дейтрона в ловушке не превышал диаметр катушки:

где М- масса дейтрона, е- элементарный электрический заряд,

- амплитуда индукции магнитного поля в центре ловушки, μ0- магнитная постоянная, w1- число витков в катушке. Подставляя выражения (8) и (10) в неравенство (9) приходим к условию (6).

На фиг. 4 представлено расчетное семейство распределений амплитуд магнитного поля вдоль оси симметрии устройства - B(p, z). Компьютерный анализ показал что ближние к центру максимумы достигаются в местах расположения катушек магнитной ловушки-

а удаленные максимумы соответствуют местам расположения фокусирующих катушек-

Для того, чтобы все ускоренные в диодах нуклиды водорода попали в ловушку, необходимо выполнение условия:

которое вытекает из адиабатической инвариантности отношения кинетической энергии поперечного движения нуклида водорода к индукции магнитного поля [3], а также геометрических условий (2), (4), (5).

Подставляя в (13) выражения (11)и(12)с учетом (8), приходим к условию (7).

Попадая во внутреннюю область магнитной ловушке ускоренные нуклиды рассеиваются и тормозятся в потоке изотопов водорода из инжектора, образовывая высокотемпературную плазму за счет нагрева электронной компоненты с последующей термолизацией.

Процесс торможения нуклида водорода в ловушке описывается следующим дифференциальным уравнением:

где F(T) - функция энергетических потерь дейтрона в дейтерий- тритиевой смеси, V(t) - скорость ускоренных дейтронов в ловушке. Компьютерный анализ показал, что время перекачки энергии ускоренного потока нейтронов в плазму, образуемою в магнитной ловушке ~10-2 мс. На такой временной базе сам процесс формирования дейтронного потока в диодной системе можно считать мгновенным.

На основании приведенных выше соображений можно составить дифференциальное уравнение, описывающее процесс нагрева плазмы в ловушке:

где θ - температура (кэВ), n - суммарная концентрация изотопов водорода в плазме, t1 - время задержки между срабатыванием импульсного высоковольтного источника и запуском генератора потока изотопов водорода. Это дифференциальное уравнение решалось на компьютере.

Полученные зависимости температуры от времени позволили рассчитать поток термоядерных нейтронов генерируемых в предлагаемом устройстве. Был рассмотрен наиболее интересный случай, когда поток изотопов водорода, создаваемый инжектором, состоял из дейтериевого и тритиевого компонентов и для образования нейтронов используется ядерная реакция T(d,n)4He. Поток термоядерных нейтронов из плазмы в полный телесный угол оценивался следующим образом:

Расчет показал, что при линейных габаритах устройства ~0.1 м, амплитуде ускоряющего импульса 5*105 кВ и длительности ~ 100 нс возможно получение до 1012 нейтронов за импульс. Использование, разработанного авторами устройства малогабаритного генератора импульсного напряжения, способного реализовывать указанные электрофизические параметры с частотой до 10 Гц делает проект предлагаемого генератора нейтронов вполне конкурентоспособным по сравнению с известными классическими генераторами нейтронов.

Предлагаемое устройство позволяет при его использовании в качестве нейтронного генератора для решения задач элементного анализа, дистанционного ядерного контроля и т.д. существенно повысить ресурс его непрерывной работы по сравнению с классическими нейтронными генераторами с твердотельными нейтронообразующими мишенями. Кроме того предлагаемое устройство может послужить основой для создания малогабаритного управляемого термоядерного реактора, работающего в импульсно- периодическом режиме.

Источники информации

1. Лукьянов С.Ю., Ковальский Н.Г. Горячая плазма и управляемый ядерный синтез. М., МИФИ, 1999, с. 391-424.

2. Морозов А.И. Введение в плазмодинамику. М., Физматлит, 2005, с. 542-543.

3. Арцимович Л.А., Лукьянов С.Ю. Движение заряженных частиц в электромагнитных полях. М., Наука, 1978, с. 76-77.

4. Кузенов В.В., Рыжков СВ. Математическая модель взаимодействия лазерных пучков высокой энергии импульса с плазменной мишенью, находящейся в затравочном магнитном поле. Препринт №942 ИПМ РАН им. А.Ю. Ишлинского, 2010, с. 6-7. (прототип).

5. Вовченко Е.Д, Исаев А.А., Козловский К.И., Шиканов А.Е., Школьников Э.Я. Генератор ускоряющего напряжения для малогабаритных импульсных источников нейтронов. ПТЭ, 2017, №3, с. 60-64.


ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 26.
26.08.2017
№217.015.de18

Способ контактной сварки магнитопроводов

Изобретение относится к способу контактной сварки магнитопроводов. Сварку осуществляют в два этапа. На первом этапе используют электроды с выступом, которые позволяют плотно сжать свариваемые детали, создать необходимую зону контакта для концентрации теплоты для сварки и избежать коробления и...
Тип: Изобретение
Номер охранного документа: 0002624750
Дата охранного документа: 06.07.2017
20.01.2018
№218.016.10a1

Способ переработки монацита

Изобретение относится к технологии комплексной переработки рудных материалов для получения редкоземельных элементов (РЗЭ). Способ переработки монацита включает вскрытие измельченного монацита 7-10 М раствором азотной кислоты при температуре 150-250°С и давлении 1,5-2,5 МПа в течение 100-200 мин...
Тип: Изобретение
Номер охранного документа: 0002633859
Дата охранного документа: 18.10.2017
10.05.2018
№218.016.3bb8

Способ калибровки сцинтилляционного детектора высоких энергий и устройство для его реализации

Группа изобретений относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов, конкретнее к способу калибровки сцинтилляционного детектора в диапазоне энергий от нескольких МэВ до сотен МэВ. Сущность изобретений заключается в том, что калибровка детектора...
Тип: Изобретение
Номер охранного документа: 0002647515
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.44e8

Арбитр приоритетов многоранговых запросов

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении скорости передачи данных. Арбитр приоритетов многоранговых запросов содержит N групп внешних входов запросов IZ1, IZ2, …, IZN, каждая из которых содержит М разрядов ранга приоритета (высший ранг...
Тип: Изобретение
Номер охранного документа: 0002649948
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.44fd

Арбитр приоритетов многоканальных запросов

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении скорости передачи данных. Арбитр приоритетов многоканальных запросов содержит N групп внешних входов запросов IZ1, IZ2, …, IZN, каждая из которых содержит М разрядов ранга приоритета (высший...
Тип: Изобретение
Номер охранного документа: 0002649953
Дата охранного документа: 05.04.2018
19.07.2018
№218.016.722d

Способ расчетно-экспериментальной оценки радиационной стойкости интегральных схем к воздействию отдельных заряженных частиц, основанный на локальном лазерном облучении

Cпособ относится к области исследований радиационной стойкости изделий полупроводниковой электроники, в частности интегральных схем, к воздействию ионизирующих излучений. Способ оценки радиационной стойкости интегральных схем к воздействию отдельных заряженных частиц, основанный на локальном...
Тип: Изобретение
Номер охранного документа: 0002661556
Дата охранного документа: 17.07.2018
13.10.2018
№218.016.9183

Способ генерации электрических квазигармонических колебаний в индуктивно-резистивной нагрузке

Изобретение относится к области электротехники и может быть использовано для питания током ультразвуковой частоты индукционных нагревателей, акустических излучателей или иных индуктивно-резистивных нагрузок, расположенных внутри нефтяных скважин. Заявлен способ генерации сигнала на базе...
Тип: Изобретение
Номер охранного документа: 0002669382
Дата охранного документа: 11.10.2018
01.11.2018
№218.016.983f

Способ комбинированного плазменного упрочнения поверхности изделий из титановых сплавов

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин. Способ комбинированного плазменного упрочнения поверхности...
Тип: Изобретение
Номер охранного документа: 0002671026
Дата охранного документа: 29.10.2018
27.04.2019
№219.017.3db3

Способ формирования износостойкого покрытия на поверхности изделий из стали

Изобретение относится способу плазменной химико-термической обработке стали. Размещают в вакуумной камере образец, создают вакуум, напускают в камеру реактивный газ в виде смеси водорода и азота. Проводят азотирование поверхности изделия в плазме индукционного высокочастотного разряда при...
Тип: Изобретение
Номер охранного документа: 0002686397
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.47f6

Плазмохимический способ получения порошка титаната и/или гафната диспрозия

Изобретение относится к плазмохимическому способу получения высокодисперсных порошков титаната и/или гафната диспрозия. Плазмохимический способ получения порошка титаната и/или гафната диспрозия заключается в том, что его получают путем подачи в прямоточный плазмохимический реактор смеси...
Тип: Изобретение
Номер охранного документа: 0002686479
Дата охранного документа: 29.04.2019
Показаны записи 1-10 из 12.
27.05.2014
№216.012.cb5a

Способ определения состояния продуктивного пласта импульсным нейтронным методом

Использование: для определения состояния продуктивного пласта импульсным нейтронным методом. Сущность изобретения заключается в том, что перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ...
Тип: Изобретение
Номер охранного документа: 0002517824
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d7e8

Ускорительная нейтронная трубка

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями. Заявленное устройство содержит герметичный корпус, внутри которого соосно расположены цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002521050
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df98

Импульсный генератор нейтронов

Заявленное изобретение относится к приборам для генерации нейтронов при ядерном взаимодействии ускоренных дейтронов с мишенями, содержащими тяжелые изотопы водорода. Заявленное устройство содержит вакуумную ускорительную трубку с анодом и катодом с мишенью, расположенной на его внутренней...
Тип: Изобретение
Номер охранного документа: 0002523026
Дата охранного документа: 20.07.2014
10.07.2015
№216.013.5fb1

Импульсный генератор нейтронов

Изобретение относится к области прикладной ядерной физики, конкретно, к устройствам для генерации импульсных нейтронных потоков, предназначенных для использования в прикладных задачах науки и техники, например, для геофизических применений. Импульсный генератор нейтронов состоит из...
Тип: Изобретение
Номер охранного документа: 0002556038
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.ac32

Способ приготовления раствора на основе цемента

Изобретение относится к строительным материалам и изделиям, в частности к технологиям изготовления бетонов, железобетонов, строительных растворов, смесей, составов, а также к области переработки радиоактивных отходов, в частности к их захоронению. В процессе приготовления раствора на основе...
Тип: Изобретение
Номер охранного документа: 0002612173
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.c817

Способ ускорения ионов импульсным электронным потоком

Изобретение относится к технике ускорения заряженных частиц в сильных электрических полях, конкретно к методам коллективного ускорения ионов импульсными электронными потоками. Технический результат - увеличение тока ускоренных дейтронов при сохранении или уменьшении размеров дрейфового...
Тип: Изобретение
Номер охранного документа: 0002619081
Дата охранного документа: 11.05.2017
19.01.2018
№218.016.0775

Способ повышения нефтеотдачи пласта с высоковязкой нефтью

Изобретение относится к области промысловой геофизики и может быть использовано для интенсификации добычи тяжелой высоковязкой нефти. Заявлен способ повышения нефтеотдачи пласта с высоковязкой нефтью, при котором погружают в скважину снаряд, содержащий спиральную линию, с помощью которой...
Тип: Изобретение
Номер охранного документа: 0002631451
Дата охранного документа: 22.09.2017
19.07.2018
№218.016.72b9

Способ создания сенсорного элемента на основе микрорезонатора из пористого кремния для детекции паров взрывчатых веществ

Изобретение относится к области физики. Способ включает введение в микрорезонатор из пористого кремния органических полимеров класса полифениленвиниленов, причем микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с...
Тип: Изобретение
Номер охранного документа: 0002661611
Дата охранного документа: 17.07.2018
13.10.2018
№218.016.9183

Способ генерации электрических квазигармонических колебаний в индуктивно-резистивной нагрузке

Изобретение относится к области электротехники и может быть использовано для питания током ультразвуковой частоты индукционных нагревателей, акустических излучателей или иных индуктивно-резистивных нагрузок, расположенных внутри нефтяных скважин. Заявлен способ генерации сигнала на базе...
Тип: Изобретение
Номер охранного документа: 0002669382
Дата охранного документа: 11.10.2018
29.05.2019
№219.017.6a25

Ионный диод для генерации нейтронов

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии нуклидов тяжелого водорода. Сущность изобретения заключается в том, что в известном ионном диоде для генерации нейтронов, содержащем...
Тип: Изобретение
Номер охранного документа: 0002461151
Дата охранного документа: 10.09.2012
+ добавить свой РИД