×
12.08.2019
219.017.be42

СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике и может быть использовано для контроля тепловых свойств цифровых интегральных схем (ЦИС). Сущность: для измерения переходной тепловой характеристики (ПТХ) цифровой интегральной схемы нечетное количество логических элементов включают по схеме кольцевого генератора. Подают питающее напряжение заданного значения и разогревают цифровую интегральную схему ступенькой электрической греющей мощности. Один логический элемент цифровой интегральной схемы поддерживают в заданном логическом состоянии, а в качестве температурочувствительного параметра используют напряжение на выходе логического элемента, состояние которого задано. Измеряют в процессе разогрева в заданные моменты времени t мгновенную потребляемую мощность и напряжение на выходе логического элемента с известным температурным коэффициентом напряжения. Рассчитывают среднюю мощность потребления цифровой интегральной схемой за время от начала нагрева t=0 до момента времени t. Определяют значение переходной тепловой характеристики как отношение приращения напряжения на выходе логического элемента к известному температурному коэффициенту и к средней потребленной мощности для каждого заданного момента времени t по формуле где U(0) и U(t) - выходное напряжение логического элемента, логическое состояние которого задано, в моменты времени t=0 и t соответственно, К - температурный коэффициент выходного напряжения логического элемента, P(t)=[P(0)+P(t)]/2 - средняя мощность, потребляемая цифровой интегральной схемой за время от начала нагрева до момента времени t, а Р(0) и P(t) - мгновенная мощность, потребляемая цифровой интегральной схемой в моменты времени t=0 и t соответственно. Технический результат: повышение точности измерения ПТХ в начале разогрева ЦИС. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к технике измерения тепловых характеристик полупроводниковых изделий и может быть использовано для измерения переходных тепловых характеристик цифровых интегральных схем (ЦИС) как на этапах их разработки и производства, так и на входном контроле предприятий-потребителей ЦИС или при выборе режимов эксплуатации.

Ключевой задачей контроля тепловых свойств полупроводниковых приборов (ППП) является определение параметров их тепловой эквивалентной схемы, по которым можно рассчитать температуру активной области (р-n-перехода) ППП в любом заданном режиме работы прибора. В приближении одномерной тепловой схемы ППП задача сводится к определению набора значений тепловых сопротивлений (RTi) и теплоемкостей (CTi) или тепловых постоянных времени (τTi=RTi⋅CTi) отдельных элементов и слоев материалов, составляющих конструкцию ППП. Указанные параметры могут быть определены по переходной тепловой характеристике (ПТХ) H(t) ППП, то есть по изменению температуры Δθn(t) активной области прибора при его саморазогреве рассеиваемой электрической мощностью заданного уровня Р0, включаемой в момент времени t=0: H(t)=Δθn(t)/P0.

Известен способ измерения ПТХ ППП с p-n-переходами по кривой остывания (см. Давидов П.Д. Анализ и расчет тепловых режимов полупроводниковых приборов. М.: Энергия. - 1967. - стр. 33), состоящий в том, что исследуемый ППП разогревают электрической мощностью известного уровня до установившегося теплового режима, затем разогревающую электрическую мощность отключают, и в заданные моменты времени измеряют изменение температуры р-n-перехода по изменению температурочувствительного параметра (ТЧП), в качестве которого чаще всего используют прямое падение напряжения на р-n-переходе ППП при малом прямом токе. Недостатками этого способа является большое время измерения, определяемое предварительным разогревом ППП до установившегося теплового режима и последующим охлаждением до температуры окружающей среды (фактически время измерения в два раза превышает длительность ПТХ), а также большая погрешность измерения, обусловленная несимметричным характером кривых охлаждения и нагрева ППП из-за различия формы тепловых потоков при охлаждении и нагреве ППП: нагрев ППП осуществляется локальными источниками тепла на поверхности кристалла, а отвод тепла - со всех нагретых поверхностей конструкции ППП.

Известен способ измерения ПТХ ППП с p-n-переходами (см. IC Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device) EIA/JEDEC JESD51-14 standard // http://www.jedec.org/download/search/jesd51-14.pdf), состоящий в том, что на изделие подают ступеньку электрической греющей мощности заданного значения, в процессе разогрева изделия в определенные моменты времени ti на короткий интервал времени (длительностью до нескольких десятков микросекунд) греющую мощность отключают, через контролируемый p-n-переход пропускают малый прямой ток и измеряют ТЧП - прямое падение напряжения на p-n-переходе - температурный коэффициент КТ которого известен, приращение температуры Δθn(ti) в момент времени ti определяется по изменению ТЧП:

где Up-n(0) - падение напряжение на p-n-переходе до разогрева изделия, Up-n(ti) - падение напряжения на p-n-переходе в момент времени ti.

Этот метод реализован, в частности, в установке T3Ster - Thermal Transient Tester (см. T3Ster - Thermal Transient Tester // www.mentor.com/micred).

Недостатком указанного способа является значительная погрешность измерения ТЧП - прямого падения напряжения на контролируемом p-n-переходе - сразу же после выключения греющей мощности из-за влияния паразитных переходных электрических процессов, возникающих в p-n-переходе ППП при переключении из греющего режима в измерительный (см., например, Сергеев В.А., Юдин В.В. Измерение тепловых параметров полупроводниковых изделий с применением амплитудно-импульсной модуляции греющей мощности // Измерительная техника. - 2010. - №6. - С. 32-39.). Для снижения этой погрешности измерение ТЧП необходимо проводить через некоторое время задержки после выключения греющей мощности, за которое электрический переходный процесс в основном завершится; за это время температура p-n-перехода может заметно измениться. При этом постоянная времени релаксации электрических процессов заранее не известна, сильно зависит от значения греющей мощности и может значительно отличаться от образца к образцу.

Наиболее близким к предлагаемому является способ измерения ПТХ ЦИС (см. патент №2613481 РФ Способ измерения переходной тепловой характеристики цифровых интегральных схем / Сергеев В.А., Тетенькин Я.Г. - Опубл. 16.03.2017, Бюл. №8), принятый в качестве прототипа и включающий подачу на ЦИС питающего напряжения, разогрев ЦИС ступенькой электрической греющей мощности путем включения нечетного количества логических элементов ЦИС по схеме кольцевого генератора (КГ), измерение в процессе разогрева в заданные моменты времени ti мгновенной потребляемой ЦИС мощности и частоты ƒКГ колебаний КГ, температурный коэффициент КТƒ которой известен, и определение значения ПТХ в моменты времени tt по формуле

где ƒКГ(0) и ƒКГ(ti) - частота колебаний КГ в моменты времени t0=0 и ti, соответственно, Pcp(ti)=[Р(0)+Р(ti)]/2 - средняя мощность, потребляемая ЦИС за время от начала нагрева t0=0 до момента времени ti, а Р(0) и P(ti) - мгновенная мощность, потребляемая ЦИС в моменты времени t0=0 и ti, соответственно.

Основной недостаток известного способа - значительная погрешность измерения ПТХ в начале (в первые несколько сотен микросекунд) нагрева ЦИС, обусловленная большой погрешностью измерения частоты при малом времени измерения. Как показано в описании известного способа по патенту 2613481 РФ, для измерения частоты КГ методом дискретного счета с погрешностью, сравнимой с погрешностью способа по стандарту JESD51-14, необходимо время счета Тс порядка 100 мкс, а для двукратного измерения - не менее 200 мкс. Поскольку тепловые постоянные времени τТкр кристалла современных ЦИС составляют сотни микросекунд, то за время измерения частоты КГ температура кристалла может заметно измениться, что приведет к погрешности определения ПТХ в начале нагрева ЦИС. Заметим, что ПТХ именно в начале нагрева ЦИС является наиболее информативной характеристикой для диагностики качества структуры ЦИС.

Технический результат - повышение точности измерения ПТХ в начале разогрева ЦИС.

Технический результат достигается тем, что в способе измерения переходной тепловой характеристики цифровых интегральных схем, в котором на цифровую интегральную схему подают питающее напряжение заданного значения, разогревают цифровую интегральную схемы ступенькой электрической греющей мощности путем включения нечетного количества логических элементов по схеме кольцевого генератора, измеряют в процессе разогрева в заданные моменты времени ti мгновенную потребляемую мощность и температурочувствительный параметр, температурный коэффициент которого известен, рассчитывают среднюю мощность потребления цифровой интегральной схемой за время от начала нагрева t0=0 до момента времени ti, определяют значение переходной тепловой характеристики как отношение приращения температурочувствительного параметра к известному температурному коэффициенту и к средней потребленной мощности для каждого заданного момента времени ti, отличие заключается в том, что один логический элемент цифровой интегральной схемы поддерживают в заданном логическом состоянии, и в качестве температурочувствительного параметра измеряют напряжение на выходе логического элемента, состояние которого задано, а значение переходной тепловой характеристики в момент времени ti находят по формуле

где Uвых(0) и Uвых(ti) - выходное напряжение логического элемента, логическое состояние которого задано, в моменты времени t0=0 и ti, соответственно, КU - температурный коэффициент выходного напряжения логического элемента, Pcp(ti)=[Р(0)+Р(ti)]/2 - средняя мощность, потребляемая цифровой интегральной схемой за время от начала нагрева до момента времени ti, а Р(0) и P(ti) - мгновенная мощность, потребляемая цифровой интегральной схемой в моменты времени t0=0 и ti, соответственно.

Сущность изобретения состоит в следующем. Несколько логических элементов (ЛЭ) контролируемой ЦИС соединяют по схеме КГ. При подключении ЦИС к источнику питания КГ начинает генерировать колебания на частоте, близкой к предельной частоте ЦИС, ЦИС начнет потреблять электрическую мощность от источника питания для поддержания этих колебаний и будет разогреваться этой мощностью.

В известном способе в качестве ТЧП используется частота колебаний КГ, которая слабо уменьшается с ростом температуры из-за увеличения времени задержки сигнала в ЛЭ ЦИС. В начале нагрева ЦИС измерение частоты колебаний КГ необходимо проводить как можно быстрее, однако с уменьшением времени измерения погрешность измерения частоты возрастает. Для уменьшения погрешности измерения ПТХ ЦИС в начале нагрева, в предлагаемом способе в качестве ТЧП измеряется напряжение Uвых на выходе ЛЭ, логическое состояние которого задано. Измерение этого напряжения может осуществляться с помощью аналого-цифрового преобразователя (АЦП). Быстродействие (время преобразования tпр) современных АЦП на несколько порядков лучше, чем у частотомеров, и составляет доли микросекунд. При известном температурном коэффициенте КU напряжения на выходе ЛЭ приращение температуры перехода в момент времени ti определяется по формуле .

В прототипе показано, что при расчете значений H(ti) ПТХ необходимо использовать не мгновенное значение, а значение средней потребляемой ЦИС мощности за время от t0=0 до , где Uпит - напряжение питания ЦМС, - средний ток потребления ЦИС.

Таким образом, значение ПТХ в момент времени ti определяется по формуле

Изменение температуры кристалла за время tпр преобразования АЦП определяется выражением

,

и при условии tпр<<<τТкр относительная систематическая погрешность измерения ПТХ в начале нагрева ε=δθ/Δθкр≈tпрТкр будет во много раз меньше чем в прототипе, где она определяется отношением ТсТкр, т.к. tпр<<Тс.

Погрешность квантования АЦП, как известно, равна 0,5 единицы младшего разряда. Так, при измерении ТЧП 16-разрядным АЦП с пределом измерения 3 В, погрешность измерения составит 0,022 мВ, что при KU=2 мВ/К соответствует изменению температуры на 0,011 К. При тепловых измерениях такой погрешностью практически можно пренебречь.

Таким образом, достигается технический результат способа - повышение точности измерения ПТХ в начале разогрева ЦИС.

На фиг. 1 приведена структурная схема устройства, реализующего предложенный способ, а на фиг. 2 - эпюры сигналов, поясняющие сущность способа и принцип работы устройства.

Устройство содержит контролируемую ЦИС 1, нечетное количество ЛЭ (ЛЭ1-ЛЭn) которой соединены по схеме КГ и один ЛЭ (ЛЭq), выходное напряжение которого используется в качестве ТЧП, источник 2 питания, блок управления 3, сопротивление нагрузки 4, преобразователь 5 тока в напряжение в цепи питания ЦИС, первый АЦП 6, первое оперативное запоминающее устройство (ОЗУ) 7, второй АЦП 8, второе ОЗУ 9, вычислитель 10, индикатор 11, шину управления 12 и шину данных 13.

Работа устройства показана на примере измерения ПТХ КМОП ЦИС. В качестве ТЧП выбрано напряжение логической единицы ЛЭ с отрицательным температурным коэффициентом напряжения KU.

Устройство работает следующим образом. Блок управления 3 в момент времени t0=0 формирует импульс UУ1 цикла измерения длительностью ТЦ (фиг. 2, а), достаточной для достижения стационарного теплового режима ЦИС, который поступает на вход первого ЛЭ в составе КГ контролируемой ЦИС 1. КГ начинает генерировать импульсы с частотой следования ƒКГ (фиг. 2, б), которая близка к предельно допустимой для данного типа ЦИС, и ЦИС будет заметно разогреваться поглощаемой мощностью. Изменение температуры Δθn(t) перехода ЦИС показано на фиг. 2в. С другого выхода блока управления 3 на первый АЦП 6 и второй АЦП 8 в заданные моменты времени ti подаются короткие управляющие импульсы UУ2 для запуска АЦП (см. фиг. 2г).

Увеличение температуры кристалла приводит к уменьшению напряжения на выходе ЛЭq (см. фиг. 2д), которое с сопротивления 4 нагрузки Rн подается на первый АЦП 6. Преобразователь 5 тока в напряжение с внутренним сопротивлением R в цепи питания ЦИС преобразует ток потребления в напряжение UR, которое подается на второй АЦП 8. По сигналу управляющих импульсов UУ2 происходит преобразование напряжений Uвых и UR в коды, которые по команде блока управления 3 через шину управления 12 передаются по шинам данных 13 на первое ОЗУ 7 и на второе ОЗУ 9, соответственно. Вычислитель 10 за время между управляющими импульсами UУ2 определяет средний ток, потребляемый ЦИС, по формуле , рассчитывает значение ПТХ по формуле и передает массив данных {ti, H(ti)} на индикатор 11, который отображает эту информацию в удобной для оператора форме.


СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ТЕПЛОВОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ СХЕМ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 216.
26.08.2017
№217.015.d7f9

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622532
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d800

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622546
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d817

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622545
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d81d

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622538
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d81f

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия, при этом сначала наносят нижний слой из нитрида ниобия, затем верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622529
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d832

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу получения многослойного покрытия для режущего инструмента. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 83,15-87,35, цирконий 12,0-16,0, кремний...
Тип: Изобретение
Номер охранного документа: 0002622541
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d83a

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622540
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d849

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622528
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d84e

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622539
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d87f

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу нанесения износостойкого покрытия на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622527
Дата охранного документа: 16.06.2017
Показаны записи 11-20 из 38.
27.03.2015
№216.013.3526

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый...
Тип: Изобретение
Номер охранного документа: 0002545090
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3636

Рециркуляционный способ измерения времени задержки распространения сигнала цифровых интегральных микросхем

Изобретение относится к измерительной технике и может быть использовано для измерения времени задержки распространения сигнала цифровых интегральных микросхем. Формируют стартовый и стоповый импульсы заданной длительности и с заданной длительностью интервала между ними, превышающей длительность...
Тип: Изобретение
Номер охранного документа: 0002545362
Дата охранного документа: 27.03.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
10.07.2015
№216.013.60c5

Способ измерения теплового импеданса светодиодов

Изобретение относится к технике измерения теплофизических параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов. Способ состоит в том, что через светодиод пропускают последовательность импульсов греющего тока постоянной...
Тип: Изобретение
Номер охранного документа: 0002556315
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60f9

Термостатирующее устройство

Изобретение относится к термостатам. Техническим результатом является повышение однородности температурного поля. Для этого в известное термостатирующее устройство введены дополнительные нагревательный элемент, электронный ключ, соединенные в последовательную цепь и подключенные к зажимам сети,...
Тип: Изобретение
Номер охранного документа: 0002556367
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.7441

Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый...
Тип: Изобретение
Номер охранного документа: 0002561336
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7442

Способ измерения теплового сопротивления кмоп цифровых интегральных микросхем

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего...
Тип: Изобретение
Номер охранного документа: 0002561337
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.85d0

Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности

Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и...
Тип: Изобретение
Номер охранного документа: 0002565859
Дата охранного документа: 20.10.2015
20.01.2016
№216.013.a0c0

Способ измерения теплового сопротивления переход-корпус мощных мдп-транзисторов

Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества. Способ заключается в том, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего...
Тип: Изобретение
Номер охранного документа: 0002572794
Дата охранного документа: 20.01.2016
25.08.2017
№217.015.992e

Способ измерения переходной тепловой характеристики светоизлучающего диода

Изобретение относится к оптоэлектронной измерительной технике и может быть использовано для измерения тепловых параметров полупроводниковых светоизлучающих диодов на различных этапах их разработки и производства, на входном контроле предприятий-производителей светотехнических изделий с...
Тип: Изобретение
Номер охранного документа: 0002609815
Дата охранного документа: 06.02.2017
+ добавить свой РИД