×
10.08.2019
219.017.bdf2

Результат интеллектуальной деятельности: Аэродинамическая труба

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло. Система управления эжектором, выполненная с возможностью включать стволы независимо друг от друга, содержит дроссели и затворы, перфорация в сопле эжектора выполнена в виде продольных щелей. Технический результат заключается в снижении расходов высоконапорного газа на менее напряженных режимах работы аэродинамической трубы. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний.

Известны аэродинамические трубы, в которых перепад давлений на рабочем сопле трубы создается с помощью эжектора либо компрессора и эжектора одновременно. (См. И. Гошек. «Аэродинамика больших скоростей», Изд. иностранной литературы. М. 1954). Контур гиперзвуковой аэродинамической трубы (источник газа, подогреватель, сопло, рабочая часть, диффузор и иногда охладитель потока) обычно заканчивается входом в выхлопную систему (входом в вакуумную емкость, эксгаустер или эжектор).

Эжекторные аэродинамические трубы (АДТ) имеют ряд преимуществ перед трубами с вакуумной емкостью и эксгаустером, особенно при испытаниях моделей с работающими двигателями. Эжектор должен обеспечивать реализацию всех режимов и одновременно не завышать стоимость испытаний, поскольку он является основным источником энергозатрат при них. Мощный эжектор позволяет реализовать в АДТ широкий диапазон чисел Маха, Рейнольдса и скоростных напоров, а также увеличить размер испытываемых моделей. С его помощью осуществляются мягкий запуск трубы и мягкий сход с режима, в результате чего не разрушаются (при прохождении скачков уплотнения) испытываемые модели, модельные державки, модельные весы и другое оборудование.

Известна аэродинамическая труба включающая сопло, рабочую часть, диффузор и многоступенчатый эжектор, принятая за прототип (см. Г.С. Бюшгенс, Е.Л. Бедржицкий. ЦАГИ - центр авиационной науки. Москва, «Наука», 1993, стр. 218).

Недостатком данного технического решения является повышенная стоимость испытаний из-за большого расхода сжатого воздуха из газгольдеров при работе в широком диапазоне режимов.

Необходимый расход сжатого воздуха через эжектор определяется его максимальной потребной степенью сжатия и поперечным размером камеры смешения. Он должен быть по экономическим соображениям близок к размеру горла диффузора трубы. Однако для разных режимов гиперзвуковой аэродинамической трубы размер горла диффузора меняется порой в несколько раз. Эжектор, выбранный для реализации наиболее напряженных режимов работы трубы, на остальных режимах оказывается переразмеренным и неэкономичным. Требования к эжектору становятся еще более противоречивыми при наличии охладителя рабочего потока, значительно уменьшающего объемный расход отсасываемого газа перед эжектором за счет снижения его температуры. Для реализации рабочих режимов в гиперзвуковых аэродинамических трубах применяются, как правило, многоступенчатые эжекторы, обеспечивающие необходимую большую (10-50) степень сжатия. Фактически требуется регулируемый по поперечному размеру многоступенчатый эжектор, но регулирование по поперечному размеру такого эжектора слишком сложная и технически трудноразрешимая задача.

Задачей и техническим результатом настоящего изобретения является создание аэродинамической трубы с эжектором, позволяющим экономить сжатый воздух на всех менее напряженных режимах, а, следовательно, минимизировать стоимость проведения испытаний.

Решение задачи и технический результат достигаются тем, что в аэродинамической трубе, включающей эжектор и систему его управления, эжектор состоит из нескольких стволов, из которых как минимум один содержит перфорированное сопло, а система управления выполнена с возможностью включать отдельно стволы независимо друг от друга. Кроме того, перфорация в сопле эжектора выполнена в виде продольных щелей, а система управления эжектором содержит дроссели и затворы в трассах подвода высоконапорного и низконапорного газов

Фиг. 1 Схема гиперзвуковой аэродинамической трубы с трехствольным эжектором.

Фиг. 2 Схема перфорированного продольными щелями сопла эжектора.

Фиг. 3 Характеристики трехствольного эжектора.

Фиг. 4 Общий вид гиперзвуковой аэродинамической трубы с трехствольным эжектором.

Схема предлагаемой аэродинамической трубы приведена на фиг. 1. Труба содержит воздухоподогреватель с форкамерой 1, аэродинамическое сопло 2, модель летательного аппарата 3, рабочую камеру 4, сверхзвуковой диффузор 5, внутренний диффузор 6, дозвуковой диффузор трубы 7, воздухоохладитель 8, многоствольный эжектор 9. В состав многоствольного эжектора 9 входят стволы (в нашем случае 3 ствола) с подводом сжатого воздуха 10, диффузор 11, шахта шумоглушения 12, затвор 13, дроссель высоконапорного газа 14. Каждый ствол эжектора содержит перфорированное продольными щелями сопло 15, обеспечивающее стволу степень сжатия многоступенчатого эжектора. Перфорированное продольными щелями сопло изображено на фиг. 2.

Двуединая задача реализации всех режимов работы аэродинамической трубы при минимальной стоимости испытаний в предложении решается устройством эжектора АДТ в виде ряда параллельных стволов с перфорированными соплами. Стволы в нужном количестве подключаются для каждого пуска в различных комбинациях. Для реализации различных комбинаций стволы имеют индивидуальный подвод высоконапорного газа 14 и затворы 13 для предотвращения натекания атмосферного воздуха в трубу через неработающий ствол (когда в него не подается высоконапорный газ). В качестве стволов применен модернизированный одноступенчатый эжектор с перфорированным продольными щелями соплом, позволяющий получать большие степени сжатия (примерно 10-50), сравнимые со степенями сжатия многоступенчатых эжекторов

На фиг. 3 приведены характеристики трехствольного эжектора, состоящего из одного большого и двух малых эжекторов, имеющих перфорированные продольными щелями сопла по фиг. 2. Характеристики (зависимости расхода отсасываемого газа от его абсолютного давления) рассчитаны при работе одного малого эжектора - линия 1, одного большого эжектора - линия 2, одновременной работе большого и одного малого эжекторов - линия 3 и одновременной работе большого и двух малых эжекторов - линия 4. При этом на линии 2 расход сжатого высоконапорного газа в два раза больше, чем на линии 1, на линии 3 - в 3, а на линии 4 - в 4 раза больше, чем на линии 1. Такая многоствольная конструкция эжектора позволяет рационально и экономично вести испытания в аэродинамической трубе. Стволы в нужном количестве (один, два или три) подключаются для каждого пуска трубы в различных комбинациях.

Как видим из фиг. 3, если бы эжектор был одноствольным и рассчитан на максимальный режим и максимальный расход отсасываемого и высоконапорного газа (см. линия 4), то на ненапряженных режимах работы трубы перерасход сжатого воздуха мог бы составлять 100-300%. Сравнение проведено с минимально необходимыми затратами сжатого воздуха на работу отсасывающего устройства аэродинамической трубы (линии 3, 2 и 1 на фиг. 3).

На фиг. 4 приведен общий вид разрабатываемой в настоящее время аэродинамической трубы с трехствольным эжектором, позволяющим в 2-3 раза снизить расходы высоконапорного газа на менее напряженных режимах работы аэродинамической трубы.


Аэродинамическая труба
Аэродинамическая труба
Аэродинамическая труба
Источник поступления информации: Роспатент

Показаны записи 121-130 из 255.
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b84a

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к области летательных аппаратов околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком...
Тип: Изобретение
Номер охранного документа: 0002615251
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.cc1d

Осесимметричная носовая часть фюзеляжа летательного аппарата

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002620455
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cffe

Имитатор сигналов мостовых тензорезисторных датчиков

Изобретение относится к измерительной технике и предназначено для имитации сигналов мостовых тензорезисторных датчиков при проведении метрологических исследований и калибровке быстродействующих измерительных систем в автоматическом режиме. Имитатор сигналов мостовых тензорезисторных датчиков...
Тип: Изобретение
Номер охранного документа: 0002620895
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e18f

Способ теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов и установка для его реализации

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности...
Тип: Изобретение
Номер охранного документа: 0002625637
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f2fc

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла самолета серповидной формы имеет переднюю и заднюю кромки, выполненные нелинейной формы, выпуклой по всей длине, состоит из профилей с увеличенной относительно концевого сечения крыла кривизной (f=0.005-0.02), меньшей относительной...
Тип: Изобретение
Номер охранного документа: 0002637233
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3ac

Импульсный плазменный тепловой актуатор эжекторного типа

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло...
Тип: Изобретение
Номер охранного документа: 0002637235
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f409

Гибридная композитная панель для авиаконструкций

Изобретение относится к области разработки многослойных композитных авиационных конструкций с повышенной ударной прочностью и высокими деформационно-прочностными характеристиками. В гибридной композитной панели для авиаконструкции, например панели фюзеляжа летательного аппарата, слои, состоящие...
Тип: Изобретение
Номер охранного документа: 0002637001
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f45a

Спироидный винглет

Группа изобретений относится к области летательных аппаратов. Спироидный винглет представляет продолжение конца крыла в виде расположенной над ним несущей поверхности замкнутой формы. Несущая поверхность винглета выполнена постоянно сужающейся, с хордой на конце ее горизонтального участка,...
Тип: Изобретение
Номер охранного документа: 0002637149
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f633

Крыло летательного аппарата с убирающимся воздушным винтом

Группа изобретений относится к авиационной технике. Крыло летательного аппарата с убирающимся воздушным винтом включает передний и задний лонжерон, предкрылок, двигатель, воздушный винт, лопасти воздушного винта. В первом варианте двигатель воздушного винта установлен на переднем лонжероне...
Тип: Изобретение
Номер охранного документа: 0002637277
Дата охранного документа: 01.12.2017
Показаны записи 1-3 из 3.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
+ добавить свой РИД