×
10.08.2019
219.017.bd86

Результат интеллектуальной деятельности: МАТЕРИАЛ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБОМАШИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к материалам прирабатываемого уплотнения турбомашины. Материал содержит частицы порошкового наполнителя с размерами частиц порошка от 30 мкм до 100 мкм и порошковой добавки, адгезионно соединенные между собой в монолитный материал. В качестве материала наполнителя использован сплав состава: Сr - от 12,0 до 14,0 вес.%, Мо - от 1,5 до 2,5 вес.%, Ti - 0,08 вес.%, С - 0,08 вес.%, Si - 0,10 вес.%, Mg - 0,20 вес.%, Fe - остальное. В качестве порошковой добавки использованы 4-5 вес.% гексагонального нитрида бора, 0,8-1,2 вес.% бария сернокислого и 0,8-1,8 вес.% стеарата цинка. Порошок гексагонального нитрида бора имеет размеры частиц от 30 мкм до 100 мкм, барий сернокислый - от 20 мкм до 100 мкм, а стеарат цинка - от 20 мкм до 100 мкм. Обеспечивается высокая прирабатываемость, механическая прочности и износостойкость материала уплотнения. 1 пр.

Изобретение относится к машиностроению, в частности к материалам уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Эффективность работы газотурбинных двигателей и установок, а также паровых турбин зависит от герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в вентиляторе, компрессоре и турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Материалы для уплотнения турбин выполняют, например, используя плетеные металлические волокна, соты [патент США №5080934, МПК F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих материалов происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющие, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известен материал прирабатываемого уплотнения турбомашины [патент США №4291089], получаемый методом газотермического напыления порошкового материала. При этом материал уплотнения формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного материала является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известен также материал прирабатываемого уплотнения турбомашины [патент США №4936745], выполненный в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного материала является низкая эрозионная стойкость и прочность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является материал прирабатываемого уплотнения турбомашины, содержащий частицы порошкового наполнителя, адгезионно соединенные между собой в монолитный материал [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995]. При этом материал уплотнения содержит заполненный в сотовые ячейки и спеченный в вакууме или защитной среде гранулированный порошковый материл состава Cr-Fe-NB-C-Ni.

Известный материал прирабатываемого уплотнения турбомашины [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995] используется для уплотнения, которое выполнено в виде жестко соединенного со статором слоя сотовой структуры. При соприкосновении выступов на торце лопатки с сотовой структурой острые кромки гребешков притупляются, что приводит к снижению эффективности уплотнения. При этом слой сотовой структуры может быть закреплен на элементе турбомашины методом сварки или пайки [например, патент РФ №2277637, МПК F01D 11/08, 2006 г.].

Процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами.

При этом сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками [например, патент РФ 2287063, МПК F01D 1 1/08, 2006 г.].

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.

В этой связи использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала допускающими врезание в него выступов лопатки и снижающими их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемого изобретения является обеспечение высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также снижения трудоемкости его изготовления.

Технический результат достигается тем, что материал прирабатываемого уплотнения турбомашины, содержащий частицы порошкового наполнителя и порошковой добавки, адгезионно соединенные между собой в монолитный материал, в отличие от прототипа в качестве материала наполнителя использован сплав состава, в вес.%: Сr - от 12,0% до 14,0%, Мо - от 1,5% до 2,5%, Ti - 0,08%, С - 0,08%, Si - 0,10%), Mg - 0,20% Fe - остальное, с размерами частиц порошка от 30 мкм до 100 мкм, а в качестве порошковой добавки использованы гексагональный нитрид бора с размерами частиц порошка от 30 мкм до 100 мкм, в количестве от 4,0% до 5,0% от общего веса материала уплотнения и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,2% от общего веса материала уплотнения и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,8% от общего веса материала уплотнения.

Исследованиями авторов было установлено, что в определенных условиях возможно создание материала для уплотнений, обладающего, с одной стороны, достаточно высокими механической прочностью и износостойкостью, позволяющими изготавливать из него элементы уплотнений, не разрушающиеся в условиях эксплуатации, а с другой -обладать высокой прирабатываемостью. Совмещение высокой механической прочности и прирабатываемости в разработанном материале для уплотнений объясняется, в частности, тем, что адгезионная прочность частиц наполнителя, образующего материал, весьма высока, тогда как в результате мгновенного ударного-теплового воздействия в условиях эксплуатации уплотнения на отдельную частицу наполнителя кинетическая энергия удара переходит в тепловую энергию. В результате этого адгезионная прочность на границе между рассматриваемой частицей и контактирующими с ней частицами наполнителя резко снижается, и в результате удара происходит отрыв рассматриваемой частицы. В целом же процесс прирабатываемости уплотнения складывается из совокупности единичных процессов отрыва частиц наполнителя в результате снижения адгезионной прочности на границе между частицами в рабочей зоне уплотнения в процессе эксплуатации. Кроме того, отрыв и унос частицы приводит к отводу излишней теплоты из зоны приработки и не позволяет нагреваться основной массе материала. Таким образом реализуется совмещение адгезионной прочности соединения частиц наполнителя, составляющей величину от 20 до 100% от прочности частиц и адгезионной прочности частиц в рабочей зоне уплотнения (зоне контакта уплотнения с лопаткой) в процессе эксплуатации, которая составляет от 0,5 до 12% от прочности соединения частиц наполнителя. В связи с дискретным характером взаимодействия системы «уплотнение-лопатка», практически после приработки происходит их безконтактное взаимодействие. Однако для реализации описанного механизма прирабатываемости уплотнения необходимо обеспечить ряд условий. К этим условиям, в частности, относятся: размеры частиц наполнителя должны составлять величину от 30 мкм до 100 мкм; в качестве материала наполнителя использоваться сплав состава, в вес. %: Сr - от 12,0% до 14,0%, Мо - от 1,5% до 2,5%, Ti - 0,08%, С -0,08%), Si - 0,10%, Mg - 0,20%) Fe - остальное; в качестве порошковой добавки использоваться гексагональный нитрид бора с размерами частиц порошка от 30 мкм до 100 мкм, в количестве от 4,0% до 5,0% от общего веса материала уплотнения и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,2% от общего веса материала уплотнения и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,8% от общего веса материала уплотнени

Пример. В качестве основы для получения материала для порошкового наполнителя прирабатываемого уплотнения использовались составы, в вес. %: 1) Сr - 11,0%, Мо - 1,3%, Fe - остальное - неудовлетворительный результат (Н.Р.); 2) Сr - 12,0%, Мо - 1,5%, Fe - остальное -удовлетворительный результат (У.Р.); 3) Сr - 14,0%, Мо - 1,3%, Fe -остальное - (Н.Р.); 4) Сr - 11,0%, Мо - 1,5%, Fe - остальное - (Н.Р.); 5) Сr - 14,0%, Мо - 2,5%, Fe - остальное - (У.Р.); 6) Сr - 16,0%, Мо - 3,5%, Fe -остальное - (Н.Р.). Размеры частиц порошка наполнителя составляли величины от 30 мкм до 100 мкм.

В качестве порошковой добавки использованы: гексагональный нитрид бора с размерами частиц порошка от 30 мкм до 100 мкм, в количестве от 4,0% до 5,0% от общего веса материала уплотнения [3,8% - (Н.Р.); 4,0% - (У.Р.); 4,5% - (У.Р.); 5,0% - (У.Р.); 5,3% - (Н.Р.)] и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,2% от общего веса материала уплотнения [0,6% - (Н.Р.); 0,8% - (У.Р.); 1,0% - (У.Р.); 1,2%- (У.Р.); 1,4% - (Н.Р.)] и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,8% от общего веса материала уплотнения [0,6% - (Н.Р.); 0,8% - (У.Р.). 1,3% - (У.Р.); 1,6% - (У.Р.); 1,8% - (У.Р.); 2,0% - (Н.Р.)]

Материал уплотнения был изготовлен спеканием в вакууме и защитной среде. Спекание одной части заготовок проводили при температуре 1200±100°С в вакуумной электропечи ОКБ 8086 при остаточном давлении в камере менее 10-2 мм рт.ст., а другой части - при той же температуре в среде осушенного диссоциированного аммиака, в засыпке из обожженного тонкомолотого глинозема. Давление прессования при изготовлении заготовок для всех вариантов было одинаковым и принято равным 70 кгс/мм. Механические свойства полученного материала составили: твердость НВ от 134 до 142; σ=29,7…38,1 кгс/мм2; σт=18,1…25,1 кгс/мм2; ударная вязкость Кс=1,21…1,59 кгм/см2.

Результаты испытаний образцов уплотнений из разработанного материала в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с их хорошей прирабатываемостью.

Материал прирабатываемого уплотнения турбомашины, содержащий частицы порошкового наполнителя и порошковой добавки, адгезионно соединенные между собой в монолитный материал, отличающийся тем, что в качестве наполнителя использованы частицы порошка сплава состава, вес. %: Cr - от 12,0 до 14,0, Мо - от 1,5 до 2,5, Ti - 0,08, С - 0,08, Si - 0,10, Mg - 0,20, Fe - остальное, с размерами от 30 мкм до 100 мкм, а в качестве порошковой добавки использованы частицы гексагонального нитрида бора с размерами от 30 мкм до 100 мкм, в количестве от 4,0 до 5,0 вес.% от общего веса материала уплотнения и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8 до 1,2 вес.% от общего веса материала уплотнения и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8 до 1,8 вес.% от общего веса материала уплотнения.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
22.10.2019
№219.017.d90b

Прирабатываемая вставка уплотнения турбины

Изобретение относится к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Прирабатываемая вставка уплотнения турбины выполнена из адгезионно соединенных между собой путем спекания частиц порошкового наполнителя и...
Тип: Изобретение
Номер охранного документа: 0002703669
Дата охранного документа: 21.10.2019
Показаны записи 91-100 из 145.
27.04.2019
№219.017.3be6

Способ упрочнения лопаток моноколеса из титановых сплавов

Изобретение относится к способу упрочнения лопаток моноколеса из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает упрочняющую обработку микрошариками, полирование, ионную очистку и ионно-имплантационную обработку...
Тип: Изобретение
Номер охранного документа: 0002685888
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.43e8

Способ восстановления лопаток турбомашин

Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановлении рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей. Способ включает выполнение на поврежденном участке пера лопатки...
Тип: Изобретение
Номер охранного документа: 0002420383
Дата охранного документа: 10.06.2011
29.04.2019
№219.017.43ec

Способ восстановления эксплуатационных свойств лопаток турбомашин из легированных сталей

Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановлении рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей, изготовленных из легированных сталей. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002420384
Дата охранного документа: 10.06.2011
29.04.2019
№219.017.461c

Способ получения жаростойкого покрытия на лопатках газовых турбин

Изобретение относится к области машиностроения, а именно к методам нанесения жаростойких покрытий или теплозащитных покрытий на лопатки энергетических и транспортных турбин, и, в особенности, газовых турбин авиадвигателей. Заявлен способ получения жаростойкого покрытия на лопатках газовых...
Тип: Изобретение
Номер охранного документа: 0002441100
Дата охранного документа: 27.01.2012
09.05.2019
№219.017.4df2

Катодный узел электродугового испарителя

Изобретение относится к технике вакуумно-плазменного нанесения покрытия, в частности к электродуговому испарителю, и может быть использовано в авиа- и машиностроении для нанесения защитных упрочняющих покрытий на различные изделия. Рабочая поверхность катода выполнена бочкообразно, внутренняя...
Тип: Изобретение
Номер охранного документа: 0002367723
Дата охранного документа: 20.09.2009
09.05.2019
№219.017.5032

Способ получения теплозащитного покрытия

Изобретение относится к области машиностроения, а именно к методам нанесения защитных покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей. Технический результат - повышение жаростойкости покрытия при одновременном повышении выносливости и...
Тип: Изобретение
Номер охранного документа: 0002441103
Дата охранного документа: 27.01.2012
09.05.2019
№219.017.5033

Способ получения жаростойкого покрытия

Изобретение относится к области машиностроения, а именно к методам нанесения защитных покрытий на лопатки энергетических и транспортных турбин, в частности газовых турбин авиадвигателей. Технический результат - повышение жаростойкости покрытия при одновременном повышении его выносливости и...
Тип: Изобретение
Номер охранного документа: 0002441104
Дата охранного документа: 27.01.2012
09.06.2019
№219.017.7654

Способ замены дефектного участка трубопровода

Изобретение относится к области трубопроводного транспорта и, в частности, может быть использовано при ремонте магистрального трубопровода с заменой дефектного участка методом вырезки/врезки катушки. Способ замены дефектного участка трубопровода, включает обнаружение дефектного участка, оценку...
Тип: Изобретение
Номер охранного документа: 0002690997
Дата охранного документа: 07.06.2019
19.06.2019
№219.017.89c9

Способ линейной сварки трением деталей из титановых сплавов

Изобретение может быть использовано при соединении трением деталей в виде пера лопатки и диска турбомашины, в частности при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием,...
Тип: Изобретение
Номер охранного документа: 0002456141
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89cf

Способ линейной сварки трением заготовок из титановых сплавов для моноблоков турбомашин

Изобретение может быть использовано при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного...
Тип: Изобретение
Номер охранного документа: 0002456143
Дата охранного документа: 20.07.2012
+ добавить свой РИД