×
03.08.2019
219.017.bc87

Результат интеллектуальной деятельности: СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА

Вид РИД

Изобретение

№ охранного документа
0002696276
Дата охранного документа
01.08.2019
Аннотация: Изобретение относится к способу получения аналогов окситоцина формулы I, где R представляет собой атом водорода или С-алкил; и R представляет собой атом водорода или С-алкил; или R и R вместе с атомом азота и атомом углерода, к которым они присоединены, образуют 5-членный гетероцикл, который возможно замещен группой гидрокси или атомом галогена; R представляет собой С-алкил. Аналоги окситоцина формулы I действуют как агонисты рецепторов окситоцина и обладают потенциалом для применения в лечении неврологических расстройств. Способ позволяет повысить выход и селективность аналогов окситоцина. 8 з.п. ф-лы, 5 табл., 13 пр.

Данное изобретение относится к новому способу получения аналогов окситоцина формулы I

где

R1 представляет собой атом водорода или С1-7-алкил, и

R2 представляет собой атом водорода или С1-7-алкил; или

R1 и R2 вместе с атомом азота и атомом углерода, к которым они присоединены, образуют 5-членный гетероцикл, который возможно замещен группой гидрокси или атомом галогена;

R3 представляет собой C1-7-алкил;

и соответствующих им энантиомеров и/или их оптических изомеров.

Аналоги окситоцина формулы I действуют как агонисты рецепторов окситоцина и обладают потенциалом для применения в лечении неврологических расстройств, таких как аутизм, стресс, включая посттравматическое стрессовое расстройство, тревога, включая тревожные расстройства и депрессию, шизофрения, психические расстройства и потеря памяти, абстинентный алкогольный синдром, лекарственная зависимость, и для лечения синдрома Прадера-Вилли (публикация РСТ WO 2014/095773).

Получение аналогов окситоцина в соответствии со способом, описанным в публикации РСТ WO 2014/095773, характеризуется следующими стадиями:

х1) отщепление Fmoc (9-флуоренилметоксикарбонил) от связанного со смолой пептидного предшественника формулы X

х2) отщепление аллильной группы на последующей стадии;

х3) циклизация на смоле с образованием кольца;

х4) удаление всех защитных групп и отщепление от смолы;

х5) очистка и выделение.

Было обнаружено, что этот известный в данной области техники способ имеет такие недостатки, как низкие общие выходы и селективность в отношении продукта.

Поэтому задача настоящего изобретения заключалась в улучшении способа синтеза касательно выхода и селективности в отношении желаемых аналогов окситоцина.

Данная задача может быть решена с использованием способа по настоящему изобретению, который указан ниже.

Способ получения аналогов окситоцина формулы I

где

R1 представляет собой атом водорода или С1-7-алкил, и

R2 представляет собой атом водорода или C1-7-алкил; или

R1 и R2 вместе с атомом азота и атомом углерода, к которым они присоединены, образуют 5-членный гетероцикл, который возможно замещен группой гидрокси или атомом галогена;

R3 представляет собой С1-7-алкил;

и соответствующих им энантиомеров и/или их оптических изомеров включает обработку связанного со смолой пептидного предшественника формулы II

где

R1, R2 и R3 являются такими, как указано выше, и

R4 представляет собой гидрокси-защитную группу;

R5 представляет собой Fmoc;

R6 представляет собой аллил, трет-бутил, 1-адамантил, 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензил или фенилизопропил;

R7 представляет собой амид-защитную группу; и

R8 представляет собой амид-защитную группу,

и соответствующих ему энантиомеров и/или их оптических изомеров,

либо в соответствии со способом:

а), где в случае, если R6 представляет собой аллил или 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензил,

а1) отщепляют аллильную группу или 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензильную группу R6, на последующей стадии

а2) отщепляют Fmoc группу R5, после чего

а3) на смоле осуществляют циклизацию с образованием кольца, на следующей стадии

а4) осуществляют удаление всех защитных групп и отщепление от смолы и, возможно,

а5) очищают и выделяют полученный таким образом аналог окситоцина формулы I;

либо в соответствии со способом:

b), где в случае, если R6 представляет собой трет-бутил, 1-адамантил или фенилизопропил,

b1) отщепляют Fmoc группу R5, после чего

b2) осуществляют удаление всех защитных групп и отщепление от смолы, на следующей стадии

b3) в растворе осуществляют циклизацию с образованием кольца, затем возможно

b4) выделяют и очищают полученный таким образом аналог окситоцина формулы I.

Следующие далее определения приведены для иллюстрации и установления значения и объема различных терминов, использованных для описания изобретения в данном документе.

Термин "C1-7-алкил" относится к одновалентному насыщенному алифатическому углеводородному радикалу с разветвленной или прямой цепью, содержащему от одного до семи атомов углерода, предпочтительно от одного до четырех, более предпочтительно один или два атома углерода. При этом в качестве примеров этого термина приводятся такие радикалы, как метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, изобутил или трет-бутил, пентил и его изомеры, гексил и его изомеры и гептил и его изомеры.

Аналогичным образом термин "С1-4-алкил" относится к одновалентному насыщенному алифатическому углеводородному радикалу с разветвленной или прямой цепью, содержащему от одного до четырех атомов углерода, с предпочтениями и соответствующими примерами, упомянутыми выше.

Термин "C1-4-алкилокси" относится к С1-4-алкильной цепи, соединенной с атомом кислорода. При этом в качестве примеров этого термина приводятся такие радикалы, как метокси, этокси, н-пропокси, изопропокси, н-бутокси, изобутокси и трет-бутокси.

Термин "С1-4-алкилоксикарбонил" относится к цепи C1-4-алкокси, соединенной с карбонильной группой, и при этом в качестве примеров приводятся конкретные указанные выше алкокси-радикалы, соединенные с карбонильной группой.

Термин "С2-4-алкенил" относится к ненасыщенной прямой или разветвленной углеродной цепи, содержащий от 2 до 4 атомов углерода, содержащей по меньшей мере одну двойную связь. При этом в качестве примеров этого термина приводятся такие радикалы, как винил, аллил и бутенил и его изомеры.

Термин "галоген" относится к атому фтора, хлора, брома или йода.

Термин "5-членный гетероцикл", который образуется с участием R1 и R2 вместе с атомом азота и атомом углерода, к которым они присоединены, обозначает пирролидиновое кольцо, возможно замещенное группой гидрокси или атомом галогена, в частности, пирролидиновое кольцо пролина, которое замещено группой гидрокси или атомом фтора.

Термин "амид-защитная группа" относится к чувствительному к кислотам или кислотам Льюиса заместителю, традиционно используемому с целью воспрепятствования вступлению в реакцию амидной группы. Подходящие чувствительные к кислотам или кислотам Льюиса амид-защитные группы описаны в Isidro-Llobet A., Alvarez, М. and Albericio F., "Amino Acid-Protecting Groups", Chem. Rev., 2009, 109, 2455-2504; Chan W.C. and White P.D. "Fmoc Solid Phase Peptide Synthesis", Oxford University Press и Green Т., "Protective Groups in Organic Synthesis", 4oe изд., Wiley Interscience, 2007, глава 7, 696 и последующие страницы. Таким образом, подходящие амид-защитные группы могут быть выбраны из тритила, Tmob (2,4,6-триметоксибензил), Xan (9-ксантенил), Cpd (циклопропилдиметилкарбинил), Mbh (4,4'-диметоксибензгидрил) или Mtt (4-метилтритил).

Термин "гидрокси-защитная группа", использованный для заместителя R4, относится к любым заместителям, традиционно используемым с целью воспрепятствования вступлению в реакцию группы гидрокси. Подходящие гидрокси-защитные группы описаны в Isidro-Llobet A., Alvarez, М. and Albericio F., "Amino Acid-Protecting Groups", Chem. Rev., 2009, 109, 2455-2504; Chan W.C. and White P.D. "Fmoc Solid Phase Peptide Synthesis", Oxford University Press; Green Т., "Protective Groups in Organic Synthesis", глава 1, John Wiley и Sons, Inc., 1991, 10-142 и могут быть выбраны из С1-4-алкила, который возможно замещен фенилом или галогенированным фенилом; С2-4-алкенила; силила, который возможно замещен C1-4-алкилом или фенилом, или С1-4-алкилоксикарбонила.

Спиралевидная связь "" означает "" или "", указывая тем самым на хиральность молекулы.

В случаях, когда в химической структуре присутствует хиральный атом углерода, подразумевается, что все стереоизомеры, ассоциированные с этим хиральным атомом углерода, охватываются данной структурой в виде чистых стереоизомеров, а также их смесей.

В конкретном воплощении настоящего изобретения аналоги окситоцина имеют формулу Iа

где R1, R2 и R3 являются такими, как указано выше.

R1 представляет собой, в частности, атом водорода или С1-4-алкил, более конкретно атом водорода или метил.

R2 представляет собой, в частности, атом водорода или С1-4-алкил, более конкретно атом водорода.

R1 и R2 вместе с атомом азота и атомом углерода, к которым они присоединены образуют, в частности, пирролидиновое кольцо пролина, которое возможно замещено группой гидрокси или атомом галогена, в частности, группой гидрокси или атомом фтора.

R3 означает, в частности, н-бутил или изобутил.

Еще более конкретные аналоги окситоцина приведены ниже:

Связанный со смолой пептидный предшественник формулы II имеет формулу

где R1, R2, R3, R4, R5, R6, R7 и R8 являются такими, как указано выше.

R1 представляет собой, в частности, атом водорода или С1-4-алкил, более конкретно атом водорода или метил.

R2 представляет собой, в частности, атом водорода или С1-4-алкил, более конкретно атом водорода.

R1 и R2 вместе с атомом азота и атомом углерода, к которым они присоединены образуют, в частности, пирролидиновое кольцо пролина, которое возможно замещено группой гидрокси или атомом галогена, в частности, группой гидрокси или атомом фтора;

R3 означает, в частности, н-бутил или изобутил;

R4 представляет собой, в частности, трет-бутил, аллил, тритил, 2-хлортритил, трет-бутилоксикарбонил, трет-бутилдифенилсилил или трет-бутилдиметилсилил, но более конкретно трет-бутил;

R5 представляет собой Fmoc;

R6 представляет собой, в частности, аллил, 1-адамантил, 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензил, фенилизопропил или трет-бутил, но более конкретно аллил;

R7 представляет собой, в частности, тритил, 2-хлортритил, 4-метилтритил, но более конкретно тритил; и

R8 представляет собой, в частности, тритил, 2-хлортритил, 4-метилтритил, но более конкретно тритил.

Связанный со смолой пептидный предшественник формулы II может быть получен с использованием способов, известных специалистам в области твердофазного пептидного синтеза, обычно путем повторения отщепления Fmoc и связывания желаемых Fmoc-защищенных аминокислот.

Как правило, можно использовать имеющиеся в продаже амидные смолы, подходящие для твердофазного пептидного синтеза, в частности, для твердофазного пептидного синтеза с использованием Fmoc. Полезные смолы описаны, например, в Chan W.С. and White P.D. "Fmoc Solid Phase Peptide Synthesis", Oxford University Press. Например, обнаружено, что смола PL-Rink (4-[(2,4-диметоксифенил)Fmoc-аминометил]-феноксиацетамидометил-смола) от Agilent Technology особенно подходит для способа по настоящему изобретению.

Отщепление Fmoc может происходить с использованием раствора производных пиперидина в подходящем органическом растворителе. Предпочтительно, если существует возможность применения раствора пиперидина или 4-метилпиперидина в N,N-диметилформамиде или N-метилпирролидоне.

Реакция связывания на смоле Fmoc-защищенных аминокислот может протекать с участием связывающего агента, выбранного из бензотриазол-1-ил-окситрипирролидинофосфония гексафторфосфата (PyBOP), (7-азабензотриазол-1-илокси)трипирролидинофосфония гексафторфосфата (PyAOP), бромтрипирролидинофосфония гексафторфосфата (PyBrOP), гидроксибензотриазола (HOBt) и N,N'-диизопропилкарбодиимида (DIC), N,N,N',N'-тетраметил-O-(бензотриазол-1-ил)-N,N,N',N'-тетраметилурония гексафторфосфата (HBTU), O-(7-азабензотриазол-1-ил)-N,N,N',N'-тетраметилурония гексафторфосфата (HATU), O-(6-хлорбензотриазол-1-ил)-N,N,N',N'-тетраметилурония гексафторфосфата (HCTU), (1-циано-2-этокси-2-оксоэтилиденаминоокси)диметиламино-морфолино-карбения гексафторфосфата (COMU), тетраметилфторформамидиния гексафторфосфата (TFFH), 2-гидрокси-пиридина (HOPy) или 4-(4,6-диметокси-1,3,5-триазин-2-ил)-4-метилморфолиния (DMTMM) хлорида в присутствии органического амина как основания и подходящего органического растворителя.

Обнаружено, что HOBt, HOPy и DIC в присутствии пиридина как органического амина в качестве основания и N,N'-диметилформамида как органического растворителя представляют собой предпочтительный связывающий агент.

Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(OAll)-Gly-Leu-Gly-смолу формулы X

можно, например, создать на смоле PL-Rink посредством повторного отщепления Fmoc и повторного связывания следующих Fmoc-защищенных аминокислот в описанном далее порядке: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Gly-OH, Fmoc-Glu(OAll)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH и Fmoc-Gly-OH.

Как указано выше, способ по настоящему изобретению может быть осуществлен аналогично способу а), где R6 представляет собой аллил или 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензил. В этом случае способ характеризуется следующими стадиями:

а1) отщепляют аллильную или 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензильную группу R6, на последующей стадии

а2) отщепляют Fmoc группу R5, после чего

а3) на смоле осуществляют циклизацию с образованием кольца, на следующей стадии

а4) осуществляют удаление всех защитных групп и отщепление от смолы и, возможно,

а5) очищают и выделяют полученный таким образом аналог окситоцина формулы I.

Отщепление аллильной или 4-{N-[1-(4,4-диметил-2,6-диоксоциклогексилиден)-3-метилбутил]амино}бензильной группы на стадии а1) обычно выполняют в присутствии соединения палладия или родия либо в присутствии гидразина. Подходящие соединения палладия или родия могут быть выбраны из тетракис(трифенилфосфин)палладия, ацетата палладия/трифенилфосфина, ацетата палладия/триэтилфосфита, дихлорида бис(трифенилфосфин)палладия или хлорида трис(трифенилфосфин)родия. Предпочтительно используют соединения палладия, еще более предпочтительно тетракис(трифенилфосфин)палладий.

В дополнение к этому, обычно присутствует скавенджер, такой как фенилсилан, пирролидин, морфолин или N-метил-N-триметилсилил-трифторацетамид, в частности, фенилсилан.

Как правило, данная реакция может протекать при комнатной температуре в подходящем органическом растворителе, таком как метиленхлорид, ацетонитрил или тетрагидрофуран.

Отщепление Fmoc на стадии а2) может быть выполнено, как указано выше, в присутствии пиперидина или 4-метил-пиперидина в подходящем органическом растворителе.

Циклизацию с образованием кольца на стадии а3) осуществляют на смоле, целесообразно с использованием циклизующего агента, выбранного из бензотриазол-1-ил-окситрипирролидинофосфония гексафторфосфата (PyBOP), (7-азабензотриазол-1-илокси)трипирролидинофосфония гексафторфосфата (PyAOP), N,N,N',N'-тетраметил-O-(1Н-бензотриазол-1-ил)урония гексафторфосфата (HBTU), 1-[бис(диметиламино)метилен]-1Н-1,2,3-триазоло[4,5-b]пиридиний-3-оксида гексафторфосфата (HATU), O-(6-хлорбензотриазол-1-ил)-N,N,N',N'-тетраметилурония гексафторфосфата (HCTU), (1-циано-2-этокси-2-оксоэтилиденаминоокси)диметиламино-морфолино-карбения гексафторфосфата (COMU), 2-гидрокси-пиридина (HOPy) или 4-(4,6-диметокси-1,3,5-триазин-2-ил)-4-метилморфолиния хлорида (DMTMM), в присутствии органического амина как основания.

Подходящие в качестве оснований органические амины могут быть выбраны из пиридина, имидазола, N,N-диизопропилэтиламина, триэтиламина, N-метилморфолина, N,N-диметил-4-аминопиридина, 1,8-диазабицикло[5.4.0]ундец-7-ена или 1,4-диазабицикло[2.2.2]октана.

В предпочтительном воплощении стадия циклизации а3) может быть выполнена с использованием PyBOP или PyAOP в присутствии N,N-диизопропилэтиламина, имидазола или N-метилморфолина как органических аминов в качестве оснований при температурах от 0°С до 25°С.

Удаление всех защитных групп и отщепление от смолы на стадии а4) может быть осуществлено в присутствии трифторуксусной кислоты/воды и подходящего скавенджера, такого как тиоанизол, анизол, фенол, триизопропилсилан, триэтилсилан, этандитиол или дитиотреитол, обычно при температурах от 0°С до 25°С. Обнаружено, что предпочтительным скавенджером является триизопропилсилан.

На стадии а5) неочищенный аналог окситоцина может быть выделен посредством отфильтровывания смолы, удаления растворителя из фильтрата и далее внесения остатка в подходящий органический растворитель, например, в метил-трет-бутиловый эфир, 2-метилтетрагидрофуран или в их смеси, и в конце фильтрования и сушки.

Неочищенный аналог окситоцина далее может быть очищен препаративной высокоэффективной жидкостной хроматографией (ВЭЖХ) в растворе с использованием подходящего органического растворителя, например, с использованием водного ацетонитрила, и подходящих вспомогательных веществ, таких как трифторуксусная кислота, уксусная кислота или ацетат аммония.

Полученные фракции затем можно подвергнуть лиофилизации с получением чистого аналога окситоцина формулы I.

Альтернативно, способ по настоящему изобретению может быть осуществлен аналогично способу b), где R6 представляет собой трет-бутил, 1-адамантил или фенилизопропил. В этом случае способ характеризуется следующими стадиями:

b1) отщепляют Fmoc группу R5, после чего

b2) осуществляют удаление всех защитных групп и отщепление от смолы, на следующей стадии

b3) в растворе осуществляют циклизацию с образованием кольца, затем возможно

b4) выделяют и очищают полученный таким образом аналог окситоцина формулы I.

Отщепление Fmoc на стадии b1) может проходить так, как описано выше для стадии а2).

Удаление всех защитных групп и отщепление от смолы на стадии b2) может быть выполнено так, как описано выше на стадии а4). Предпочтительные воплощения, описанные для стадии а4, подобным же образом применимы для стадии b2).

Циклизацию с образованием кольца на стадии b3) осуществляют в растворе, но она может происходить в присутствии циклизующих агентов и органических аминов как оснований, приведенных выше для стадии а3). Предпочтительные воплощения, описанные для стадии а3, подобным же образом применимы для стадии b3).

Выделение и очистка на стадии b4) могут быть выполнены аналогично тому, как описано на стадии а5). Предпочтительные воплощения, описанные для стадии а5, подобным же образом применимы для стадии b4).

В конкретном воплощении настоящего изобретения альтернативный способ b) предпочтительнее альтернативного способа а).

ПРИМЕРЫ

Сокращения

SPPS означает твердофазный пептидный синтез, смола PL-Rink означает 4-[(2,4-диметоксифенил)Fmoc-аминометил]феноксиацетамидометил-смолу от Agilent Technology (PL1467-4749: 0,32 ммоль/г, 75-150⋅10-6 м; PL1467-4799: 0,55 ммоль/г, 75-150⋅10-6; PL1467-4689: 0,96 ммоль/г, 150-300⋅10-6 м), Fmoc означает 9-флуоренилметоксикарбонил, Gly означает глицин, Leu означает лейцин, Glu(OAll) означает аллил-защищенную глутаминовую кислоту, Glu(tBu) означает трет-бутил-защищенную глутаминовую кислоту, Asn(Trt) означает тритил-защищенный аспарагин, Gln(Trt) означает тритил-защищенный глутамин, Ilе означает изолейцин, Tyr(tBu) означает трет-бутил-защищенный тирозин, Sar означает N-метилглицин, Pro означает пролин, Nle означает норлейцин, ДМФА означает N,N-диметилформамид, HOBt означает 1-гидроксибензотриазол, HOPy означает 2-гидрокси-пиридин, DIC означает N,N'-диизопропилкарбодиимид, NEP означает N-этилпирролидон, PyBOP означает (бензотриазол-1-илокси)трипирролидинофосфония гексафторфосфат, DIPEA означает диизопропилэтиламин, МеОН означает метанол, CH2Cl2 означает дихлорметан, МТВЕ означает метил-трет-бутиловый эфир, MeTHF означает 2-метилтетрагидрофуран, TFA означает трифторуксусную кислоту, MeCN означает ацетонитрил, РуАОР означает (7-азабензотриазол-1-илокси)трипирролидинофосфония гексафторфосфат, HBTU означает N,N,N',N'-тетраметил-O-(1Н-бензотриазол-1-ил)урония гексафторфосфат, HATU означает 1-[бис(диметиламино)метилен]-1Н-1,2,3-триазоло[4,5-b]пиридиний-3-оксида гексафторфосфат, HCTU означает O-(6-хлорбензотриазол-1-ил)-N,N,N',N'-тетраметилурония гексафторфосфат, COMU означает (1-циано-2-этокси-2-оксоэтилиденаминоокси)диметиламино-морфолино-карбения гексафторфосфат, DMTMM означает 4-(4,6-диметокси-1,3,5-триазин-2-ил)-4-метилморфолиния хлорид, NMP означает 1-метил-2-пирролидинон, DMSO означает диметилсульфоксид, DMI означает 1,3-диметил-2-имидазолидинон, DMPU означает 1,3-диметил-3,4,5,6-тетрагидро-2(1Н)-пиримидинон, NMM означает N-метилморфолин, DMAP означает N,N-диметил-4-аминопиридин, DIPEA означает N,N-диизопропилзтиламин, DBU означает 1,8-диазабицикло[5.4.0]ундец-7-ен, DABCO означает 1,4-диазабицикло[2.2.2]октан.

Пример сравнения

Проводили сравнительный эксперимент для получения

по аналогии с синтезом, описание которого приведено в WO 2014/095773 (циклизация на твердой фазе), и как указано ниже на схеме 1.

Схема 1:

Эффективность синтеза была оценена по выходу продукта и соотношению продукта (1) и побочного продукта - димера формулы, показанной на схеме 2, приведенной ниже.

Схема 2:

a) Отщепление Fmoc

В реактор для SPPS (100 мл; пептидный синтезатор CS136XT от CSBio) загружали смолу PL-Rink (загрузка 0,55 ммоль/г; 5,00 г; 2,75 ммоль) и 20%-ный пиперидин в ДМФА (50,0 мл). Затем эту смесь перемешивали при 25°С в течение 10 мин. После слива растворителя добавляли другую порцию 20%-ного пиперидина в ДМФА (50,0 мл) и смесь перемешивали при 25°С в течение 30 мин. После слива растворителя полученную смолу промывали ДМФА (8×50,0 мл), получая PL-Rink смолу без Fmoc.

b) Связывание с Fmoc-производными аминокислот

К PL-Rink смоле без Fmoc группы добавляли раствор Fmoc-Gly-OH в смеси 0,35 М HOBt/ДМФА (32,0 мл; 11,2 ммоль), 0,92 М DIC в ДМФА (16,0 мл; 14,7 ммоль) и 10%-ный пиридин в ДМФА (16,0 мл; 19,8 ммоль) и перемешивали при 25°С в течение 3 ч. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), получая Fmoc-Gly-смолу.

Стадии отщепления Fmoc и связывания с Fmoc-производными аминокислот повторяли 8 раз, используя вместо Fmoc-Gly-OH следующие Fmoc-производные аминокислот: Fmoc-Leu-OH, Fmoc-Gly-OH, Fmoc-Glu(OAll)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH, с получением Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(OAll)-Gly-Leu-Gly-смолы. Образец отщепляли от смолы (см. ниже) для подтверждения правильности массы. MS (масс-спектр) (m/z): 1211,8 (М+Н)+.

c) Отщепление Fmoc

Отщепление Fmoc от концевого остатка Gly проводили так, как описано выше, получая H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(OAll)-Gly-Leu-Gly-смолу. Образец отщепляли от смолы (разбавитель см. ниже) для подтверждения правильности массы. MS (m/z): 989,8 (М+Н)+.

d) Отщепление аллильной группы

К H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(OAll)-Gly-Leu-Gly-смоле добавляли раствор тетракис-трифенилфосфин-палладия (159 мг; 0,138 ммоль) и фенилсилана (3,40 мл; 27,6 ммоль) в CH2Cl2 (50,0 мл) и перемешивали при 25°С в течение 30 мин. После слива растворителя эту стадию повторяли еще раз и промывали ДМФА (2×50,0 мл). Добавляли раствор дитиокарбамата натрия (250 мг) и DIPEA (0,250 мл) в ДМФА (50,0 мл) и смесь перемешивали при 25°С в течение 15 мин. После слива растворителя эту стадию повторяли еще раз. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), получая H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu-Gly-Leu-Gly-смолу. Образец отщепляли от смолы (разбавитель см. ниже) для подтверждения правильности массы. MS (m/z): 949,7 (М+Н)+.

e) Циклизация на смоле

Раствор PyBOP (2,36 г; 4,54 ммоль) и DIPEA (2,40 мл; 13,8 ммоль) в NEP (60,0 мл) добавляли к H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu-Gly-Leu-Gly-смоле и смесь перемешивали при 25°С в течение 4 ч. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), CH2Cl2 (3×50,0 мл) и МеОН (3×50,0 мл). Смолу сушили при давлении 10 мбар (1 кПа) при 25°С в течение 1 суток, получая с[Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu]-Gly-Leu-Gly-смолу (8,60 г).

f) Удаление всех защитных групп и отщепление от смолы

К предварительно охлажденному (10-15°С) раствору триизопропилсилана (2,80 мл) в TFA (40,0 мл) и воде (10,0 мл) добавляли c[Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu]-Gly-Leu-Gly-смолу (8,60 г) и перемешивали при 25°С в течение 3 ч. Смолу отфильтровывали и фильтрат концентрировали в вакууме. Остаток добавляли к МТВЕ (100 мл) и смесь перемешивали при 25°С в течение 15 ч. Смесь фильтровали и осадок на фильтре промывали МТВЕ (50,0 мл), затем сушили, получая неочищенный продукт c[Gly-Tyr-Ile-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 1 (2,01 г; результаты анализа: 11,3 масс. %; общий выход 9%) в виде белого твердого вещества с чистотой 15,9% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). Соотношение продукт 1/димер составляло 8,5.

Пример 1 (циклизация на твердой фазе)

Схема 3:

a) Отщепление Fmoc

В реактор для SPPS (100 мл; пептидный синтезатор CS136XT от CSBio) загружали смолу PL-Rink (загрузка 0,55 ммоль/г; 5,00 г; 2,75 ммоль) и 20%-ный пиперидин в ДМФА (50,0 мл). Затем эту смесь перемешивали при 25°С в течение 10 мин. После слива растворителя добавляли другую порцию 20%-ного пиперидина в ДМФА (50,0 мл) и смесь перемешивали при 25°С в течение 30 мин. После слива растворителя полученную смолу промывали ДМФА (8×50,0 мл), получая PL-Rink смолу без Fmoc группы.

b) Связывание с Fmoc-производными аминокислот

К PL-Rink смоле без Fmoc группы добавляли раствор Fmoc-Gly-OH в смеси 0,35 М HOBt/ДМФА (32,0 мл; 11,2 ммоль), 0,92 М DIC в ДМФА (16,0 мл; 14,7 ммоль) и 10%-ный пиридин в ДМФА (16,0 мл; 19,8 ммоль) и перемешивали при 25°С в течение 3 ч. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), получая Fmoc-Gly-смолу.

Стадии отщепления Fmoc и связывания с Fmoc-производными аминокислот повторяли 8 раз, используя вместо Fmoc-Gly-OH следующие Fmoc-производные аминокислот: Fmoc-Leu-OH, Fmoc-Gly-OH, Fmoc-Glu(OAll)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH, с получением продукта X (Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(OAll)-Gly-Leu-Gly-смолы). Образец отщепляли от смолы (см. ниже) для подтверждения правильности массы. MS (m/z): 1211,8 (М+Н)+.

c) Отщепление аллильной группы

К продукту X (Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(OAll)-Gly-Leu-Gly-смоле) добавляли раствор тетракис-трифенилфосфин-палладия (159 мг; 0,138 ммоль) и фенилсилана (3,40 мл; 27,6 ммоль) в CH2Cl2 (50,0 мл) и перемешивали при 25°С в течение 30 мин. После слива растворителя эту стадию повторяли еще раз и промывали ДМФА (2×50,0 мл). Добавляли раствор дитиокарбамата натрия (250 мг) и DIPEA (0,250 мл) в ДМФА (50,0 мл) и смесь перемешивали при 25°С в течение 15 мин. После слива растворителя эту стадию повторяли еще раз. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), получая Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu-Gly-Leu-Gly-смолу. Образец отщепляли от смолы (разбавитель см. ниже) для подтверждения правильности массы. MS (m/z): 1171,8 (М+Н)+.

d) Отщепление Fmoc

Отщепление Fmoc от концевого остатка Gly проводили так, как описано выше, получая H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu-Gly-Leu-Gly-cмoлy. Образец отщепляли от смолы (разбавитель см. ниже) для подтверждения правильности массы. MS (m/z): 949,7 (М+Н)+.

e) Циклизация на смоле

Раствор PyBOP (2,36 г; 4,54 ммоль) и DIPEA (2,40 мл; 13,8 ммоль) в NEP (60,0 мл) добавляли к (H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu-Gly-Leu-Gly-cмoле и смесь перемешивали при 25°С в течение 4 ч. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), CH2Cl2 (3×50,0 мл) и МеОН (3×50,0 мл). Смолу сушили при давлении 10 мбар (1 кПа) при 25°С в течение 1 суток, получая с[Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu]-Gly-Leu-Gly-cмoлy (9,17 г).

f) Удаление всех защитных групп и отщепление от смолы

К предварительно охлажденному (10-15°С) раствору триизопропилсилана (2,50 мл) в TFA (40,0 мл) и воде (10,0 мл) добавляли c[Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu]-Gly-Leu-Gly-cмoлy (9,17 г) и перемешивали при 25°С в течение 3 ч. Смолу отфильтровывали и фильтрат концентрировали в вакууме. Остаток добавляли к МТВЕ (100 мл) и смесь перемешивали при 25°С в течение 15 ч. Смесь фильтровали и осадок на фильтре промывали МТВЕ (50,0 мл), затем сушили, получая неочищенный продукт c[Gly-Tyr-Ile-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 1 (2,39 г; результаты анализа: 40,9 масс. %, общий выход 38%) в виде белого твердого вещества с чистотой 62,7% (% по площади по данным ВЭЖХ; метод ВЭЖХ: С18-колонка для UPLC (сверхэффективная жидкостная хроматография) Aquity ВЕН130, 150×2,1 мм; подвижная фаза, А: 0,05% TFA в воде, В: 0,05% TFA в MeCN; скорость потока: 0,13 мл/мин в течение 40 мин; 0,25 мл/мин в течение 15 мин; изократический режим 90/10 (А/В) в течение 3 мин, градиент от 90/10 (А/В) до 62/38 (А/В) в пределах 37 мин, градиент от 62/38 (А/В) до 10/90 (А/В) в пределах 5 мин, изократический режим 10/90 (А/В) в течение 10 мин. Темп.: 60°С, УФ: 214 нм). Соотношение продукт 1/димер составляло 21,9.

Время удерживания: 23,2 мин (c[Gly-Tyr-Ile-Gln-Asn-Glu]-Gly-Leu-Gly-NH2), 18,8 мин (H-Gly-Tyr-Ile-Gln-Asn-Glu-Gly-Leu-Gly-NH2), 26,1 мин (димер).

g) Очистка и выделение

Неочищенный продукт c[Gly-Tyr-Ile-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 растворяли в смеси воды и MeCN (10:1) и фильтровали. Фильтрат разбавляли, используя тот же объем воды. Раствор очищали препаративной ВЭЖХ на колонке Kromasil-C18-100 (250×80 мм, размер частиц 10 мкм, А: 0,1% TFA-вода, В: MeCN; скорость потока: 300 мл/мин; изократический режим 95/5 (А/В) в течение 2 мин, градиент от 95/5 (А/В) до 80/20 (А/В) в пределах 1 мин, градиент от 80/20 (А/В) до 77/23 (А/В) в пределах 17 мин, градиент от 77/23 (А/В) до 10/90 (А/В) в пределах 1 мин, изократический режим 10/90 (А/В) в течение 7 мин, градиент от 10/90 (А/В) до 95/5 (А/В) в пределах 1 мин, изократический режим 95/5 (А/В) в течение 6 мин. Фракции собирали и лиофилизировали, получая чистый продукт c[Gly-Tyr-lle-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 1 (0,708 г) в виде белого порошка с чистотой 99,2% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). В чистом продукте 1 никакого димера не обнаруживали. MS (m/z): 931,0 (М+Н)+.

Пример 2 (циклизация в жидкой Фазе)

Схема 4:

a) Отщепление Fmoc

В реактор для SPPS (100 мл) загружали смолу PL-Rink (загрузка 0,55 ммоль/г; 5,00 г; 2,75 ммоль) и 20%-ный пиперидин в ДМФА (50,0 мл). Затем эту смесь перемешивали при 25°С в течение 10 мин. После слива растворителя добавляли другую порцию 20%-ного пиперидина в ДМФА (50,0 мл) и смесь перемешивали при 25°С в течение 30 мин. После слива растворителя полученную смолу промывали ДМФА (8×50,0 мл), получая PL-Rink смолу без Fmoc группы.

b) Связывание Fmoc-производных аминокислот

К PL-Rink смоле без Fmoc группы добавляли раствор Fmoc-Gly-OH в смеси 0,35 М HOBt/ДМФА (32,0 мл; 11,2 ммоль), 0,92 М DIC в ДМФА (16,0 мл; 14,7 ммоль) и 10%-ный пиридин в ДМФА (16,0 мл; 19,8 ммоль) и перемешивали при 25°С в течение 3 ч. После слива растворителя полученную смолу промывали ДМФА (4×50,0 мл), получая Fmoc-Gly-смолу.

Стадии отщепления Fmoc и связывания с Fmoc-производными аминокислот повторяли 8 раз, используя вместо Fmoc-Gly-OH следующие Fmoc-производные аминокислот: Fmoc-Leu-OH, Fmoc-Gly-OH, Fmoc-Glu(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH, с получением продукта X (Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(tBu)-Pro-Leu-Gly-смолы). Образец отщепляли от смолы (см. ниже) для подтверждения правильности массы. MS (m/z): 1171,8 (М+Н)+.

c) Отщепление Fmoc

Отщепление Fmoc от концевого остатка Gly проводили так, как описано выше. После слива растворителя полученную смолу промывали ДМФА (8×50,0 мл), CH2Cl2 (3×50,0 мл) и МеОН (3×50,0 мл). Смолу сушили при давлении 10 мбар (1 кПа) при 25°С в течение 1 суток, получая H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(tBu)-Gly-Leu-Gly-cмoлy (10,8 г).

d) Удаление всех защитных групп и отщепление от смолы

К предварительно охлажденному (10-15°С) раствору триизопропилсилана (2,50 мл) в TFA (40,0 мл) и воде (10,0 мл) добавляли H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(tBu)-Gly-Leu-Gly-cмoлy (10,8 г) и перемешивали при 25°С в течение 3 ч. Смолу отфильтровывали и фильтрат концентрировали в вакууме. Остаток добавляли к MeTHF (100 мл) и смесь перемешивали при 25°С в течение 15 ч. Смесь фильтровали и осадок на фильтре промывали MeTHF (50,0 мл), затем сушили, получая LP1 (H-Gly-Tyr-Ile-Gln-Asn-Glu-Gly-Leu-Gly-NH2) (3,60 г) в виде белого твердого вещества с чистотой 67,4% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). MS (m/z): 949,7 (М+Н)+.

e) Циклизация в растворе

К смеси LP1 (H-Gly-Tyr-Ile-Gln-Asn-Glu-Gly-Leu-Gly-NH2) (3,50 г) в NEP (60,0 мл) и DIPEA (3,13 мл; 18,4 ммоль) добавляли PyBOP (1,92 г; 3,69 ммоль) и перемешивали при 25°С в течение 1 ч. Для полного превращения добавляли другую порцию PyBOP (0,960 г; 1,84 ммоль) и перемешивали при той же температуре в течение 1 ч. Полученную смесь добавляли к раствору MTBE/MeTHF (400 мл/100 мл) и перемешивали при 25°С в течение 15 ч. Смесь фильтровали и осадок на фильтре промывали МТВЕ (50,0 мл), затем сушили, получая неочищенный продукт c[Gly-Tyr-Leu-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 1 (4,30 г; результаты анализа: 18,0 масс. %, общий выход 31%) в виде белого твердого вещества с чистотой 56,6% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). Соотношение продукт 1/димер составляло 15,1.

f) Очистка и выделение

Неочищенный продукт c[Gly-Tyr-Leu-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 растворяли в смеси воды и MeCN (10:1) и отфильтровывали нерастворившийся материал. Фильтрат разбавляли, используя тот же объем воды. Раствор очищали препаративной ВЭЖХ на колонке Kromasil-C18-100 (250×80 мм, размер частиц 10 мкм, А: 0,1% TFA-вода, В: MeCN; скорость потока: 300 мл/мин; изократический режим 95/5 (А/В) в течение 2 мин, градиент от 95/5 (А/В) до 80/20 (А/В) в пределах 1 мин, градиент от 80/20 (А/В) до 77/23 (А/В) в пределах 17 мин, градиент от 77/23 (А/В) до 10/90 (А/В) в пределах 1 мин, изократический режим 10/90 (А/В) в течение 7 мин, градиент от 10/90 (А/В) до 95/5 (А/В) в пределах 1 мин, изократический режим 95/5 (А/В) в течение 6 мин. Фракции собирали и лиофилизировали, получая чистый продукт c[Gly-Tyr-Leu-Gln-Asn-Glu]-Gly-Leu-Gly-NH2 1 (444 мг) в виде белого порошка с чистотой 99,7% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). В чистом продукте 1 присутствия димера не обнаружено. MS (m/z): 931,0.

Пример 3 a-g (оптимизация связующих реагентов)

Способом, аналогичным таковому в примере 2, стадии циклизации осуществляли, используя связующие реагенты, приведенные в Таблице 2.

Пример 4 a-g (оптимизация растворителей)

Способом, аналогичным таковому в примере 2, стадии циклизации осуществляли, используя растворители, приведенные в Таблице 3.

Пример 5 a-g (оптимизация оснований)

Способом, аналогичным таковому в примере 2, стадии циклизации осуществляли, используя основания, приведенные в Таблице 4.

Пример 6 a-d (сравнение нагрузки смолы/ эквивалентов аминокислоты)

Схема 5:

Способом, аналогичным таковому в примере 2, синтезировали чистый циклический пептид 2, используя следующие Fmoc-производные аминокислот: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Pro-OH, Fmoc-Glu(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH.

Масштаб синтеза: 9,60 ммоль (нагрузка: см. пример 6а-d; смола 30,0 г).

Выход: 40% (после очистки).

Чистота: 98,2% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1).

Время удерживания: 29,8 мин (метод ВЭЖХ см. в примере 1).

MS (m/z): 971,5 (М+Н)+.

Чистоту и выход промежуточного линейного пептида LP2 (H-Gly-Tyr-Ile-Gln-Asn-Glu-Pro-Leu-Gly-NH2) определяли, используя нагрузку смолы/эквиваленты аминокислоты, которые приведены в Таблице 5.

Пример 7

Получение продукта примера 7 осуществляли способом, аналогичным таковому в примере 2, за исключением того, что стадии циклизации осуществляли, используя в качестве основания N-метилморфолин.

a) Отщепление Fmoc

В реактор для SPPS (250 мл; пептидный синтезатор CS536XT от CSBio) загружали смолу PL-Rink (загрузка 0,55 ммоль/г; 10,0 г; 5,5 ммоль) и 20%-ный пиперидин в ДМФА (100,0 мл). Затем эту смесь перемешивали при 25°С в течение 10 мин. После слива растворителя добавляли другую порцию 20%-ного пиперидина в ДМФА (100,0 мл) и смесь перемешивали при 25°С в течение 30 мин. После слива растворителя полученную смолу промывали ДМФА (8×100,0 мл), получая PL-Rink смолу без Fmoc группы.

b) Связывание Fmoc-производных аминокислот

К PL-Rink смоле без Fmoc группы добавляли раствор Fmoc-Gly-OH в смеси 0,35 М HOBt/ДМФА (64,0 мл; 22,4 ммоль), 0,92 М DIC в ДМФА (32,0 мл; 29,4 ммоль) и 10%-ный пиридин в ДМФА (32,0 мл; 39,6 ммоль) и перемешивали при 25°С в течение 3 ч. После слива растворителя полученную смолу промывали ДМФА (4×100,0 мл), получая Fmoc-Gly-смолу.

Стадии отщепления Fmoc и связывания с Fmoc-производными аминокислот повторяли 8 раз, используя вместо Fmoc-Gly-OH следующие Fmoc-производные аминокислот: Fmoc-Leu-OH, Fmoc-Pro-OH, Fmoc-Glu(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH, с получением Fmoc-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(tBu)-Pro-Leu-Gly-cмoлы. Образец отщепляли от смолы (разбавитель см. ниже) для подтверждения правильности массы. MS (m/z): 1211,1 (М+Н)+.

c) Отщепление Fmoc

Отщепление Fmoc от концевого остатка Gly проводили так, как описано выше. После слива растворителя полученную смолу промывали ДМФА (8×100 мл), CH2Cl2 (3×100 мл) и МеОН (3×100 мл). Смолу сушили при давлении 10 мбар (1 кПа) при 25°С в течение 1 суток, получая H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(tBu)-Pro-Leu-Gly-смолу (18,6 г). Образец отщепляли от смолы (разбавитель см. ниже) для подтверждения правильности массы. MS (m/z): 989,7 (М+Н)+.

d) Удаление всех защитных групп и отщепление от смолы

К предварительно охлажденному (10-15°С) раствору триизопропилсилана (3,00 мл) в TFA (48,0 мл) и воде (12,0 мл) добавляли H-Gly-Tyr(tBu)-Ile-Gln(Trt)-Asn(Trt)-Glu(tBu)-Pro-Leu-Gly-смолу (6,00 г) и перемешивали при 25°С в течение 3 ч. Смолу отфильтровывали и фильтрат концентрировали в вакууме. Остаток добавляли к MeTHF (120 мл) и смесь перемешивали при 25°С в течение 15 ч. Смесь фильтровали и осадок на фильтре промывали MeTHF (60,0 мл), затем сушили, получая H-Gly-Tyr-Ile-Gln-Asn-Glu-Pro-Leu-Gly-NH2 LP2 (1,84 г) в виде белого твердого вещества с чистотой 87,3% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). Время удерживания: 23,9 мин (метод ВЭЖХ см. в примере 1); MS (m/z): 989,7 (М+Н)+.

е) Циклизация в растворе

К смеси H-Gly-Tyr-Ile-Gln-Asn-Glu-Pro-Leu-Gly-NH2 LP2 (300 мг) в N-этилпирролидоне (3,60 мл) и NMM (0,167 мл; 1,52 ммоль) добавляли PyBOP (237 мг; 0,455 ммоль) и перемешивали при 25°С в течение 1 ч. Для полного превращения добавляли другую порцию PyBOP (47,4 мг; 0,0910 ммоль) и перемешивали при той же температуре в течение 1 ч. Полученную смесь добавляли к раствору МТВЕ (24,0 мл) и MeTHF (6,00 мл) и затем перемешивали при 25°С в течение 15 ч. Смесь фильтровали и осадок на фильтре промывали МТВЕ (15,0 мл). Осадок на фильтре растворяли в воде/MeCN (10/1, 3,3 мл) и отфильтровывали нерастворившиеся материалы. Фильтрат лиофилизировали, получая неочищенный продукт c[Gly-Tyr-Leu-Gln-Asn-Glu]-Pro-Leu-Gly-NH2 2 (313 мг; результаты анализа: 54,0 масс. %, общий выход 60%) в виде белого твердого вещества с чистотой 71,4% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1). MS (m/z): 971,5 (М+Н)+.

Пример 8

Способом, аналогичным таковому в примере 2, синтезировали чистый циклический пептид 3, используя следующие Fmoc-производные аминокислот: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Sar-OH, Fmoc-Glu(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH.

Масштаб синтеза: 9,60 ммоль (загрузка: 0,32 ммоль/г, смола 30,0 г).

Выход: 41% (после очистки).

Чистота: 98,9% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1).

Время удерживания: 27,6 мин (метод ВЭЖХ см. в примере 1).

MS (m/z): 945,5 (М+Н)+.

Пример 9

Способом, аналогичным таковому в примере 2, синтезировали чистый циклический пептид 4, используя следующие Fmoc-производные аминокислот: Fmoc-Gly-OH, Fmoc-Nle-OH, Fmoc-Sar-OH, Fmoc-Glu(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH.

Масштаб синтеза: 9,60 ммоль (загрузка 0,32 ммоль/г, смола 30,0 г).

Выход: 41% (после очистки).

Чистота: 99,2% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1).

Время удерживания: 25,9 мин (метод ВЭЖХ см. в примере 1).

MS (m/z): 945,5 (М+Н)+.

Пример 10

Способом, аналогичным таковому в примере 2, синтезировали чистый циклический пептид 5, используя следующие Fmoc-производные аминокислот: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-транс-4-фтор-Pro-ОН, Fmoc-Glu(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH.

Масштаб синтеза: 9,60 ммоль (загрузка 0,32 ммоль/г, смола 30,0 г).

Выход: 39% (после очистки).

Чистота: 98,8% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1).

Время удерживания: 25,7 мин (метод ВЭЖХ см. в примере 1).

MS (m/z): 988,5 (М+Н)+.

Пример 11

Способом, аналогичным таковому в примере 2, синтезировали чистый циклический пептид 6, используя следующие Fmoc-производные аминокислот: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-транс-4-трет-бутокси-Pro-ОН, Fmoc-Glu(tBu)-ОН, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH.

Масштаб синтеза: 9,60 ммоль (загрузка 0,32 ммоль/г, смола 30,0 г). Выход: 22% (после очистки).

Чистота: 98,7% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1).

Время удерживания: 23,3 мин (метод ВЭЖХ см. в примере 1). MS (m/z): 987,5 (М+Н)+.

Пример 12 (циклизация на твердой Фазе)

Способом, аналогичным таковому в примере 1 с использованием пептидного синтезатора CS536XT от CSBio, синтезировали чистый циклический пептид 5, используя следующие Fmoc-производные аминокислот: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-транс-4-фтор-Pro-ОН, Fmoc-Glu(OAll)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Gly-OH. На протяжении всего синтеза, для отщепления Fmoc использовали 10%-ный раствор 4-метил-пиперидина в ДМФА вместо 20%-ного пиперидина в ДМФА и все реакции связывания аминокислот с образованием линейной последовательности проводили, используя HOPy вместо HOBt. На конечной PyBOP-стимулируемой стадии циклизации на смоле в качестве основания использовали 4-метилморфолин вместо DIPEA и циклизацию проводили, используя в качестве растворителя ДМФА вместо NEP. Очистку неочищенного продукта c[Gly-Tyr-Ile-Gln-Asn-Glu]-транс-4-фтор-Pro-Leu-Gly-NH2 препаративной ВЭЖХ проводили на колонке Kromasil-C18-100 (250×4,6 мм, размер частиц 10 мкм, А: 20 мМ NH4OAc, рН 5, В: MeCN; скорость потока: 1 мл/мин; изократический режим 90/10 (А/В) в течение 1 мин, градиент от 90/10 (А/В) до 80/20 (А/В) в пределах 1 мин, градиент от 80/20 (А/В) до 75/25 (А/В) в пределах 10 мин, градиент от 75/25 (А/В) до 10/90 (А/В) в пределах 1 мин, градиент от 10/90 (А/В) до в течение 5 мин, градиент от 10/90 (А/В) до 90/10 (А/В) в пределах 0,1 мин, изократический режим 90/10 (А/В) в течение 6,9 мин. Собранные фракции разбавляли водой (1:1) и концентрировали/обессоливали, нанося на предварительно обработанную (смесью вода/ACN (ацетонитрил), 90/10) колонку Kromasil С18-100-10 (250×4,6 мм), и после этого элюировали смесью вода/ACN (1:1). Собранные фракции (УФ 280 нм, порог 1000 миллиединиц оптической плотности (mAU; от milli Absorbance Unit) упаривали на роторном испарителе для удаления ACN и после этого лиофилизировали, получая чистый пептид в виде белого лиофилизированного продукта.

Масштаб синтеза: 5,50 ммоль (загрузка 0,55 ммоль/г, смола 10,0 г).

Выход: 34% (после очистки).

Чистота: 98,8% (% по площади по данным ВЭЖХ; метод ВЭЖХ см. в примере 1).

Время удерживания: 25,3 мин (метод ВЭЖХ см. в примере 1).

MS (m/z): 989,5 (М+Н)+.

Пример 13 (циклизация на твердой фазе)

Способом, аналогичным таковому в примере 13, синтезировали чистый циклический пептид 5, используя HOBt вместо HOPy на протяжении всего синтеза линейного пептида на смоле.

Масштаб синтеза: 5,50 ммоль (загрузка 0,55 ммоль/г, смола 10,0 г).

Выход: 25% (после очистки).


СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
СПОСОБЫ ПОЛУЧЕНИЯ АНАЛОГОВ ОКСИТОЦИНА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 288.
27.02.2013
№216.012.29d7

Препарат антитела

Группа изобретений относится к медицине, в частности к составам, содержащим человеческое анти-СD20 моноклональное антитело, поверхностно-активное вещество: полисорбат или полоксамер, трегалозу, гистидиновый буфер, к способам его изготовления и применения. Группа изобретний обеспечивает составы...
Тип: Изобретение
Номер охранного документа: 0002476238
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.36c6

Производные гетероарилпирролидинил- и пиперидинилкетона

Изобретение относится к соединению формулы I и к его применению для изготовления лекарства для лечения депрессии, тревоги или их обеих: или к его фармацевтически приемлемым солям, где m представляет собой 0-3; n представляет собой 0-2; Аr представляет собой: возможно замещенный индолил;...
Тип: Изобретение
Номер охранного документа: 0002479575
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.484f

Производные изоксазоло-пиридина

Настоящее изобретение относится к производным изоксазол-пиридина формулы (I) где X, R, R, R, R, R и R такие, как описано в п.1 формулы изобретения или его фармацевтически приемлемая соль. Кроме того, изобретение относится к лекарственному средству для лечения заболеваний, связанных с сайтом...
Тип: Изобретение
Номер охранного документа: 0002484091
Дата охранного документа: 10.06.2013
27.12.2013
№216.012.90b4

Производные имидазопиридина или имидазопиримидина в качестве ингибиторов фосфодиэстеразы 10а

Настоящее изобретение относится к области органической химии, а именно к новым производным имидазопиридина или имидазопиримидина формулы (I) и к их фармацевтически приемлемым солям и эфирам, где А представляет собой N или C(R); R представляет собой водород, низший алкил; R представляет собой...
Тип: Изобретение
Номер охранного документа: 0002502737
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.97be

Ингибиторы jnk

Изобретение относится к новым производным аминопиримидинов, обладающим ингибирующей активностью в отношении JNK киназы. В формуле (I) каждый из R и R независимо представляет собой Н или Cалкил; или R и R вместе образуют Сциклоалкильное кольцо, необязательно замещенное одним или несколькими R; R...
Тип: Изобретение
Номер охранного документа: 0002504545
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e6f

Бензопирановые и бензоксепиновые ингибиторы рi3k и их применение

Изобретение относится к соединению Формулы I, включая его стереоизомеры, геометрические изомеры, таутомеры или фармацевтически приемлемые соли: где Z представляет собой CR; Z представляет собой CR; Z представляет собой CR или N; Z представляет собой CR или N; где (i) X представляет собой N и Х...
Тип: Изобретение
Номер охранного документа: 0002506267
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a212

Арилциклогексилэфиры дигидротетраазабензоазуленов для применения в качестве антагонистов рецептора вазопрессина v1a

Описываются новые арилциклогексилэфиры 5,6-дигидро-4H-2,3,5,10b-тетрааза-бензо[e]азуленовых производных Формулы I где R - фенил, возможно замещенный циано, C-алкилом, галогено-C-алкилом, C-алкокси или галогено; нафтил, пиразинил или пиридазинил; пиридинил, возможно замещенный галогено или...
Тип: Изобретение
Номер охранного документа: 0002507205
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a966

Пуриновые соединения, ингибирующие рi3к, и способы применения

Изобретение относится к новым пуриновым соединениям формулы I и их фармацевтически приемлемым солям, которые обладают свойствами ингибитора липидных киназ, включая p110 альфа и другие изоформы PI3K, и являются пригодными для лечения пролиферативных заболеваний, таких как рак. В формуле I R...
Тип: Изобретение
Номер охранного документа: 0002509081
Дата охранного документа: 10.03.2014
27.03.2014
№216.012.ae8a

Алкилциклогексиловые эфиры дигидротетраазабензоазуленов

Описываются новые алкилциклогексилэфиры 5,6-дигидро-4Н-2,3,5,10b-тетрааза-бензо[е]азуленовых производных формулы I R - C-алкил, возможно замещенный галогено, гидрокси или С-алкокси, CF, С-циклоалкил, 4-6-членный гетероциклоалкил, содержащий один O; R - Н, С-алкил, возможно замещенный OH,...
Тип: Изобретение
Номер охранного документа: 0002510397
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b5e1

Способ синтеза производных амино-метилтетралина

Изобретение относится к способу получения соединения Формулы или , где m имеет значение 0 или 1; n имеет значение от 0 до 3; Ar представляет собой: арил или гетероарил, каждый из которых может быть возможно замещенным и иметь в качестве заместителей галогено, Cалкил, Салкокси, циано, гидрокси,...
Тип: Изобретение
Номер охранного документа: 0002512285
Дата охранного документа: 10.04.2014
Показаны записи 1-7 из 7.
27.12.2013
№216.012.90b4

Производные имидазопиридина или имидазопиримидина в качестве ингибиторов фосфодиэстеразы 10а

Настоящее изобретение относится к области органической химии, а именно к новым производным имидазопиридина или имидазопиримидина формулы (I) и к их фармацевтически приемлемым солям и эфирам, где А представляет собой N или C(R); R представляет собой водород, низший алкил; R представляет собой...
Тип: Изобретение
Номер охранного документа: 0002502737
Дата охранного документа: 27.12.2013
20.08.2015
№216.013.6ea5

Азотосодержащие производные гетероарилов

Изобретение относится к новым азотсодержащим гетероарильным производным формулы (I), где А и А независимо выбраны из группы, состоящей из СН и N, при условии, что А и А одновременно не представляют собой N; R представляет собой C-С-алкил, C-С-алкокси, C-С-алкокси-C-С-алкил или циклоалкил; R и...
Тип: Изобретение
Номер охранного документа: 0002559895
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.770d

Производные n-(имидазопиримидин-7-ил)-гетероариламидов и их применение в качестве ингибиторов pde10a

Изобретение относится к соединениям формулы (I) и их фармацевтически приемлемым солям. Соединения изобретения могут применяться в качестве терапевтически активных веществ, ингибирующих PDE10A. В формуле (I) R представляет собой фенил или тиенил, где фенил и тиенил необязательно замещены 1...
Тип: Изобретение
Номер охранного документа: 0002562066
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8e9e

Циклопентил- и циклогептилпиразолы в качестве модуляторов fxr

Настоящее изобретение относится к новым циклопентил- и циклогептилпиразоловым производным формулы I, где А и R-R определены в формуле изобретения, или их фармацевтически приемлемым солям. Соединения формулы (I) являются модуляторами активности FXR. Изобретение также относится к фармацевтической...
Тип: Изобретение
Номер охранного документа: 0002568119
Дата охранного документа: 10.11.2015
25.08.2017
№217.015.cc95

Способ получения производных 2-фенил[1,2,4]триазоло[1,5-а]пиридина

Изобретение относится к способу получения производных 2-фенил[1,2,4]триазоло[1,5-a]пиридина формулы I или его соли в котором R представляет собой водород, галоген, возможно защищенную гидроксильную группу или возможно защищенную аминогруппу и R представляет собой водород или галоген,...
Тип: Изобретение
Номер охранного документа: 0002620379
Дата охранного документа: 25.05.2017
20.01.2018
№218.016.1d79

Производные дипептида лизин-глутаминовая кислота

Изобретение относится к соединениям формулы I, а также их энантиомерам, диастереомерам и солям, которые могут найти применение в твердофазном синтезе пептидов. В формуле I R представляет собой С-алкил, R представляет собой водород или С-алкенил, R представляет собой...
Тип: Изобретение
Номер охранного документа: 0002640812
Дата охранного документа: 12.01.2018
13.08.2018
№218.016.7b7f

Катализируемое палладием сочетание пиразоламидов

Изобретение относится к способу получения соединений имидазо[1,2-а]пиридина формулы (I), где R представляет собой С-алкокси или NRR, где R и R независимо представляют собой С-алкил, или R и R вместе с атомом азота, к которому они присоединены, образуют насыщенное от 4- до 6-членное...
Тип: Изобретение
Номер охранного документа: 0002663834
Дата охранного документа: 10.08.2018
+ добавить свой РИД