×
03.08.2019
219.017.bc3f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившего масла и вычисляют коэффициент испаряемости К как отношение массы испарившего смазочного материала к массе пробы до испытания, отбирают часть пробы окисленного смазочного материала, определяют оптическую плотность D и коэффициент сопротивляемости R по формуле: По данным изменения коэффициента сопротивляемости R окислению от температуры испытания исследуемого смазочного материала строят графическую зависимость его от оптической плотности и температуры испытания, по которой определяют однородность состава продуктов окисления и влияние температуры на изменение состава в зависимости от концентрации продуктов окисления. Технический результат: расширение арсенала технических средств, относящихся к технологии испытания смазочных материалов для определения влияния концентрации продуктов окисления на их состав в зависимости от температуры испытания. 4 ил.

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления.

Известен способ определения термической стабильности смазочного масла путем определения коэффициента поглощения светового потока, вязкости, коэффициента энергетического состояния, температуры начала нагарообразования и разности коэффициентов поглощения светового потока до и после центрифугирования (патент РФ 2240558 О, дата приоритета 10.04.2003, дата публикации 20.11.2004, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является способ определения температурной стойкости смазочных масел, принятый в качестве прототипа, при котором отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания. Далее определяют коэффициент испаряемости как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции, зависящий от коэффициента поглощения светового потока и коэффициента испарения, затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции от температуры испытания, а температурную стойкость определяют по величине коэффициента сопротивляемости температурной деструкции в зависимости от температуры (патент РФ 2406087 С1, дата приоритета 08.06.2009, дата публикации 10.12.2010, авторы: Ковальский Б.И. и др., RU, прототип).

Недостатком прототипа и известного аналога является то, что они не учитывают влияние температуры испытания на состав продуктов окисления смазочных материалов.

Задачей изобретения является установление количественных показателей влияния температуры испытания смазочных материалов на состав продуктов окисления в зависимости от их концентрации.

Для решения поставленной задачи предложен способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов, при котором пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившего масла и вычисляют коэффициент испаряемости КG как отношение массы испарившего смазочного материала к массе пробы до испытания, отбирают часть пробы окисленного смазочного материала, определяют оптическую плотность D и коэффициент сопротивляемости R по формуле: По данным изменения коэффициента сопротивляемости R окислению от температуры испытания исследуемого смазочного материала строят графическую зависимость его от оптической плотности и температуры испытания, по которой определяют однородность состава продуктов окисления и влияние температуры на изменение состава в зависимости от концентрации продуктов окисления.

На фиг. 1 представлены зависимости коэффициента сопротивляемости окислению от оптической плотности и температуры испытания минерального моторного масла Tavota Castle 10W-30 SL при температурах 180, 170 и 160°С. На фиг. 2 - зависимости при испытании частично синтетического моторного масла Zic А 10W-40 SL при температурах 200, 190 и 180°С. На фиг. 3 - зависимости частично синтетического моторного масла Zic 5000 10W-40 CG-4/SH при температурах 200, 190 и 180°С. На фиг. 4 - зависимости синтетического моторного масла Elf evolution 5W-40 SL/CF при температурах 180, 170 и 160°С.

Пример конкретного выполнения способа.

Испытанию подвергались товарные моторные масла: минеральное - Tavota Castle 10W-30 SL; частично синтетические Zic A 10W-40 SL и Zic 5000 10W-40 CG-4/SH; синтетическое Elf evolution 5W-40 SL/CF.

Пробу масла массой, например 100±0,1 г заливают в термостойкий стеклянный стакан и перемешивают стеклянной мешалкой с частотой вращения 300 об/мин. Температура испытания и частота вращения мешалки поддерживается автоматически. Через равные промежутки времени пробу окисленного масла взвешивают, определяют массу испарившегося масла, вычисляют коэффициент испаряемости как отношение массы испарившегося масла за время испытания t к массе пробы до испытания, отбирают часть пробы окисленного масла (2 г) для прямого фотометрирования при толщине фотометрируемого слоя 2 мм и определения оптической плотности D по формуле:

D=lg300/П,

где 300 - показания фотометра при незаполненной кювете окисленным маслом, мкА; П - показания фотометра при заполненной окисленным маслом кювете, мкА.

В связи с тем, что при термостатировании смазочного материала сброс избыточной тепловой энергии происходит по двум параллельным каналам с образованием продуктов окисления, концентрация которых определяется оптической плотностью D и продуктов испарения, выраженных коэффициентом испаряемости КG, то сопротивляемость испытуемого смазочного материала температурным воздействиям можно выразить параллельным соединением сопротивлений электрической цепи RЭ:

Если принять, что сопротивляемость любого смазочного материала температурным воздействиям равна единице, то при термостатировании его сопротивление будет уменьшаться до нуля, что будет соответствовать выражению для определения коэффициента сопротивляемости R:

По полученным данным оптической плотности D и коэффициента испаряемости КG при термостатировании исследуемых масел при разных температурах строятся графические зависимости изменения коэффициента сопротивляемости R от оптической плотности и температуры испытания (фиг. 1 - фиг. 4), по которым определяется влияние температуры испытания смазочных материалов на состав продуктов окисления в зависимости от их концентрации. Установлено, что в начальный период термостатирования независимо от температуры испытания зависимости совпадают, что подтверждает одинаковый состав продуктов окисления. При большой концентрации продуктов окисления зависимости расходятся и тем больше, чем ниже температура испытания. Причем продолжительность совпадения зависимостей на одной кривой зависит от температуры испытания. Так, для минерального моторного масла Tavota Castle 10W-30 SL (фиг. 1) продолжительность однородного состава продуктов окисления составляла для температур 180, 170 и 160°С (кривые 1, 2 и 3) - D ≈ 0,06. Для частично синтетического моторного масла Zic A 10W-40 SL (фиг. 2) продолжительность однородного состава продуктов окисления составляла для температур 200, 190 и 180°С (кривые 1, 2 и 3) - D ≈ 0,13. Для частично синтетического моторного масла Zic 5000 10W-40 CG-4/SH (фиг. 3) продолжительность однородного состава продуктов окисления составляла для температур 200, 190 180°С (кривые 1, 2 и 3) - D ≈ 0,11. Для синтетического моторного масла Elf evolution 5W-40 SL/CF (фиг. 4) продолжительность однородного состава продуктов окисления составляла для температур 180 и 170°С (кривые 1 и 2) - D ≈ 0,15; для температур 170 и 160°С (кривые 2 и 3) - D ≈ 0,05.

Таким образом, установлено, что в начальный период окисления моторного масла различной базовой основы независимо от температуры термостатирования образуются продукты окисления одинакового состава (начальные), и их влияние на сопротивляемость масел температурным воздействиям также одинаковое. Дальнейшее увеличение оптической плотности вызывает преобразование начальных продуктов окисления в более энергоемкие, образование которых зависит от температуры термостатирования.

Предлагаемое техническое решение позволяет подтвердить механизм окисления смазочных масел, заключающийся в начальном образовании продуктов окисления независимо от базовой основы масел и температуры испытания, которые в дальнейшем переходят в более энергоемкие, влияющие более интенсивно на оптическую плотность и зависящие от температуры испытания.

Технический результат, достигаемый изобретением, заключается в расширении арсенала технических средств, относящихся к технологии испытания смазочных материалов для определения влияния температуры испытания смазочных материалов на состав продуктов окисления в зависимости от их концентрации.

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов, при котором пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием, через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившегося смазочного материала и вычисляют коэффициент испаряемости К как отношение массы испарившего смазочного материала к массе пробы до испытания, отбирают часть пробы окисленного смазочного материала, определяют оптическую плотность D, определяют коэффициент сопротивляемости R по формуле: , по данным изменения коэффициента сопротивляемости R окислению от температуры испытания исследуемого смазочного материала строят графическую зависимость его от оптической плотности и температуры испытания, по которой определяют однородность состава продуктов окисления и влияние температуры на изменение состава в зависимости от концентрации продуктов окисления.
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ НА СВОЙСТВА ПРОДУКТОВ ОКИСЛЕНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 324.
09.10.2019
№219.017.d367

Способ флотационно-магнитного обогащения сульфидных свинцово-цинковых руд

Изобретение относится к области обогащения полезных ископаемых и может быть наиболее эффективно использовано при переработке сульфидных свинцово-цинковых руд. Способ флотационно-магнитного обогащения свинцово-цинковых руд включает измельчение руды, коллективную флотацию с получением...
Тип: Изобретение
Номер охранного документа: 0002702309
Дата охранного документа: 07.10.2019
09.10.2019
№219.017.d3a5

Адаптивный виброгаситель крутильных колебаний

Изобретение относится к машиностроению. Адаптивный виброгаситель крутильных колебаний представляет собой центробежный регулятор. Виброгаситель включают двухзвенники с верхним и нижним амортизаторами, между которыми встроен масса-шарнир. Регулятор образует маховик, установленный на бурильной...
Тип: Изобретение
Номер охранного документа: 0002702284
Дата охранного документа: 07.10.2019
10.10.2019
№219.017.d3db

Расширитель скважины

Изобретение относится к области строительства, в частности к устройствам для увеличения размеров скважины, а также для уплотнения грунта внутри полости, и может быть использовано при устройстве буронабивных свай преимущественно в слабых грунтах. Расширитель скважины включает пантографный...
Тип: Изобретение
Номер охранного документа: 0002702484
Дата охранного документа: 08.10.2019
10.10.2019
№219.017.d42e

Гидромонитор

Изобретение относится к техническим средствам разрушения материалов струей жидкости и может быть использовано, в частности, в горнодобывающей промышленности для гидравлического разрушения массивов горных пород при разработке месторождений полезных ископаемых. Гидромонитор содержит ствол с...
Тип: Изобретение
Номер охранного документа: 0002702442
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d4ae

Способ переработки нефелиновых руд и концентратов

Изобретение может быть использовано в химической промышленности для получения глинозема и содопродуктов. Переработка нефелиновых руд и концентратов включает подготовку нефелиново-известняково-содовой шихты с введением в нее глиноземсодержащей добавки, спекание и выщелачивание подготовленной...
Тип: Изобретение
Номер охранного документа: 0002702590
Дата охранного документа: 08.10.2019
15.10.2019
№219.017.d56a

Буровая коронка

Изобретение относится к области создания бурового породоразрушающего инструмента для вращательного бурения скважин. Буровая коронка включает корпус с матрицей и породоразрушающие круглые резцы типа PDC, установленные в матрице с возможностью вращения вокруг своей оси. Резцы разделены на...
Тип: Изобретение
Номер охранного документа: 0002702787
Дата охранного документа: 11.10.2019
22.10.2019
№219.017.d8e0

Завихритель газового потока

Изобретение относится к устройствам, предназначенным для организации завихрения рабочего потока с целью обеспечения эффективного теплообмена между различными средами, и может быть использовано в различных отраслях техники для интенсификации процессов теплообмена. Завихритель газового потока...
Тип: Изобретение
Номер охранного документа: 0002703643
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.db45

Конструкция из габионов для укрепления берегового откоса

Изобретение относится к гидротехническому строительству и может быть использовано в качестве берегоукрепительных конструкций в руслах рек или каналов. Конструкция из габионов для укрепления берегового откоса содержит скрепленные между собой сетчатые металлические цилиндры с наполнителем,...
Тип: Изобретение
Номер охранного документа: 0002704277
Дата охранного документа: 25.10.2019
26.10.2019
№219.017.db56

Экспресс-способ определения ингибиторов бутирилхолинэстеразы в воде и водных экстрактах

Изобретение относится к области контроля загрязнений окружающей среды и представляет собой способ определения соединений антихолинэстеразного действия в воде и водных экстрактах, включающий измерение скорости ферментативного гидролиза бутирилтиохолина, согласно изобретению при приготовлении...
Тип: Изобретение
Номер охранного документа: 0002704264
Дата охранного документа: 25.10.2019
30.10.2019
№219.017.dbd9

Устройство для контроля и измерения линейных размеров

Изобретение может быть использовано при сборке и установке узлов машин, содержащих детали с заданным осевым (торцовым) зазором, в частности для определения толщины дистанционного кольца водокольцевых вакуум насосов и компрессоров. Устройство содержит корпус в виде призмы с одной призматической...
Тип: Изобретение
Номер охранного документа: 0002704328
Дата охранного документа: 28.10.2019
Показаны записи 31-36 из 36.
19.06.2019
№219.017.899b

Способ определения температурной стойкости смазочных масел

Изобретение относится к технологии испытания смазочных материалов. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину и каждую часть пробы...
Тип: Изобретение
Номер охранного документа: 0002471187
Дата охранного документа: 27.12.2012
27.07.2019
№219.017.b9c4

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных...
Тип: Изобретение
Номер охранного документа: 0002695704
Дата охранного документа: 25.07.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД