×
31.07.2019
219.017.ba52

Результат интеллектуальной деятельности: СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО АНАЛИЗА ГАЗООБРАЗНЫХ ПРОДУКТОВ РАЗЛОЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Вид РИД

Изобретение

Аннотация: Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа газообразных продуктов термообработки вещества, включающего в себя помещение образцов ВВ в реакционный объем, оснащенный приборами для нагрева и контроля параметров температуры, давления, нагрев реакционного объема с ВВ, наблюдение за состоянием исследуемого объема и регистрацию измерительных сигналов, спектральный анализ продуктов термодеструкции взрывчатого вещества согласно изобретению осуществляют в режиме реального времени с использованием спектрометрии в субтерагерцевом (субТГц) частотном диапазоне, при этом реакционный объем выполнен в виде двух пространственно разделенных вакуумируемых объемов, в одном из которых осуществляют нагрев ВВ, а в другом - анализ состава многокомпонентной среды, образующейся при терморазложении ВВ, по спектрам поглощения излучения на резонансных частотах того или иного продукта делается вывод о наличии или отсутствии его в продуктах разложения ВВ и относительном его количестве. Технический результат изобретения заключается в обеспечении возможности получения данных о процессе термораспада в каждый момент этого процесса, а также в повышении селективности по отношению к разнообразным индивидуальным компонентам многокомпонентной смеси, образующейся при термораспаде ВВ. 1 ил., 1 пр.

Предлагаемое изобретение относится к области методов анализа механизмов поведения (разложения) взрывчатых веществ (ВВ) при термических воздействиях и методов исследования продуктов терморазложения ВВ.

Наиболее широко применяющиеся методы изучения кинетики термического разложения взрывчатых веществ (ВВ) подразумевают регистрацию следующих параметров этого процесса: тепловые потоки (метод ДСК), масса образца (ТГА), общее давление газообразных продуктов (манометрический метод). Исследование химического состава газообразных продуктов разложения ВВ в реальном времени позволяет расширить представления о стадийности протекающих химических реакций, что недоступно при использовании вышеперечисленных методов. Для решения этой задачи существуют аппаратурные схемы, совмещающие ДСК-ТГ-анализ с ИК-Фурье-спектрометрией и масс-спектрометрией. Эти методы имеют ограничения по селективности и чувствительности, кроме того им присуща неоднозначность при идентификации продуктов разложения.

Известен способ анализа продуктов терморазложения ВВ (заявка РФ №2007136413, МПК G01N 25/14, публ. 10.04.2009 г.), включающий термообработку навески вещества в вакууме с вымораживанием газообразных продуктов, считывание сигнала термо-э.д.с. лампы-детектора и построение температурной зависимости газовыделения, согласно которому производят дальнейший анализ продуктов термодеструкции образца, собранных в ловушке, осуществляя контролируемый нагрев ловушки и десорбцию находящихся в ней продуктов, после чего отбирают газовые пробы для спектрального определения вещества.

К недостаткам известного способа относится отсутствие возможности наблюдения и анализа в режиме реального времени за состоянием многокомпонентной газовой среды, образующейся при термораспаде ВВ.

Задача авторов изобретения заключается в разработке информативного способа спектрометрического анализа газообразных продуктов разложения взрывчатых веществ с использованием спектрометрии в субтерагерцевом частотном диапазоне в реальном времени, обеспечивающего проведение анализа с высокой селективностью и чувствительностью в отношении к определяемым газообразным продуктам разложения ВВ, имеющим различную природу и свойства.

Новый технический результат, обеспечиваемый предлагаемым изобретением, заключается в обеспечении возможности получения данных о процессе термораспада в каждый момент этого процесса, а также в повышении селективности по отношению к разнообразным индивидуальным компонентам многокомпонентной смеси, образующейся при термораспаде ВВ.

Указанные задача и новый технический результат обеспечиваются тем, что, в отличие от известного способа анализа газообразных продуктов термообработки вещества, включающего в себя помещение образцов ВВ в реакционный объем, оснащенный приборами для нагрева и контроля параметров температуры, давления, нагрев реакционного объема с ВВ, наблюдение за состоянием исследуемого объема и регистрацию измерительных сигналов, согласно изобретению, спектральный анализ продуктов термодеструкции взрывчатого вещества осуществляют в режиме реального времени, с использованием спектрометрии в субтерагерцевом (субТГц) частотном диапазоне, при этом реакционный объем выполнен в виде двух пространственно разделенных вакуумируемых объемов, в одном из которых осуществляют нагрев ВВ, а в другом - анализ состава многокомпонентной среды, образующейся при терморазложении ВВ, по спектрам поглощения излучения на резонансных частотах того или иного продукта делается вывод о наличии или отсутствии его в продуктах разложения ВВ и относительном его количестве.

Предлагаемый способ анализа газообразных продуктов разложения взрывчатых веществ поясняется следующим образом.

На фиг. 1 представлена принципиальная схема оборудования для регистрации субтерагерцевого спектра газообразных продуктов термического разложения взрывчатых веществ, где 1 - навеска исследуемого соединения; 2 - реакционный объем (кварцевая колба); 3 - источник монохроматического фазоманипулированного излучения субтерагерцевого частотного диапазона; 4 - детектор излучения; 5 - аналитический объем (кварцевая кювета); 6 - нагревательная обмотка, закрытая слоями теплоизолирующего материала.

Сущность изобретения и последовательность осуществления его этапов заключается в следующем.

В предлагаемом способе анализ газообразных продуктов разложения ВВ проводится в реальном времени, без предварительного отбора и разделения смеси продуктов. Этим условиям наиболее полно отвечает спектрометрическое оборудование высокого разрешения, функционирующее в субтерагерцевом диапазоне частот в режиме фазовой манипуляции. Работа в субТГц диапазоне частот позволяет идентифицировать отдельные компоненты сложных газовых смесей по их вращательным линиям, практически не совпадающим у различных соединений, за счет этого обеспечивается высокая селективность анализа. Применение субТГц спектрометра с фазовой манипуляцией позволяет с периодичностью порядка секунд регистрировать значения коэффициентов поглощения на линиях отдельных компонентов газовой фазы, образующейся при разложении ВВ и поступающей в аналитический объем. Также субТГц спектрометр с фазовой манипуляцией допускает использование аналитического объема произвольной формы, что невозможно при применении традиционных спектрометров высокого разрешения субТГц диапазона частот.

Авторами предлагаемого изобретения была выдвинута идея разделения измеряемого объема на два независимых, в одном из которых - реакционном объеме - осуществляют термическое разложение исследуемого образца ВВ, в другом - аналитическом объеме - ведут регистрацию субТГц спектров газообразных продуктов терморазложения исследуемого ВВ. Это позволяет анализировать состав продуктов разложения, не нарушая герметичность системы и не прерывая процесс разложения, т.е. в реальном времени.

Между источником 3 монохроматического фазоманипулированного излучения субтерагерцевого диапазона частот (115-175 ГГц) и детектором 4 спектрометра помещается герметичная, вакуумируемая, прозрачная для электромагнитного излучения кювета, содержащая реакционный 2 и аналитический объемы 5. Навеска 1 ВВ разлагается в реакционном объеме в результате нагрева по заданному температурному режиму. Газообразные продукты разложения ВВ благодаря градиенту давления поступают в предварительно прогретый аналитический объем. Одновременно аналитический объем подвергают воздействию монохроматического электромагнитного излучения в диапазоне 115-175 ГГц, периодически меняющего фазу на 180°. По поглощению излучения на резонансных частотах того или иного продукта делается вывод о наличии или отсутствии его в продуктах разложения ВВ в данный момент процесса терморазложения и об относительном его количестве.

Предлагаемый метод по сравнению с перечисленными выше обладает существенно более высокой чувствительностью (от десятков пикограммов по сравнению с десятками нанограммов для серийных ИК-Фурье-спектрометров). Кроме того, поскольку в указанном диапазоне частот регистрируются характеристические спектры молекул, а не функциональных групп и ионов, как в случае с ИК- и масс-спектрометрией, то для него также характерна более высокая селективность и однозначность идентификации продуктов разложения.

Возможность промышленной реализации предлагаемого способа подтверждается следующим примером конкретного исполнения.

Пример 1.

В лабораторных условиях предлагаемый способ анализа газообразных продуктов разложения взрывчатых веществ осуществляется на рабочем макете спектрометра в следующем порядке.

1) Навеску твердого вещества массой не более 0,5 г помещают в реакционный объем действующего макета спектрометра. Присоединяют реакционный объем к кювете, вакуумируют до давления порядка 10-3-10-2 мбар. Вакуумирование кюветы и реакционного объема необходимо для проявления вращательных спектров газообразных соединений.

2) Включают спектрометр (лабораторные измерения произведены на приборе производства Института физики микроструктур РАН, 2015 г. выпуска), производят его подготовительную юстировку и настройку для выхода на рабочий режим.

3) Реакционный и аналитический объемы прогревают одном из интересующих режимов:

- прогрев с максимальной скоростью до интересующей температуры (не выше температуры начала самоподдерживающейся реакции, известной для исследуемого ВВ из справочных данных);

- линейное увеличение температуры с заданной скоростью.

4) В зависимости от целей исследования анализ продуктов разложения осуществляют следующими способами.

А) Для установления присутствия выбранного соединения в газовой фазе в каталоге спектральных линий выбирают наиболее сильные линии поглощения этого соединения и производят сканирование спектра в окрестностях этих линий, т.е. в диапазонах от (ν0-Δν) до (ν0+Δν), где ν0 - частота линии по каталогу, ν≈2-4 МГц.

Наличие поглощения на выбранной линии устанавливают по наличию отклонения сигнала вблизи ν0 от базовой линии более чем на 3⋅sr, где sr - стандартное отклонение фонового сигнала. Если, согласно каталогу, другие соединения имеют спектральные линии, близкие к выбранной, необходимо провести аналогичную проверку наличия поглощения на других линиях этих соединений с целью исключить их присутствие в газовой фазе.

Присутствие выбранного соединения в газовой фазе продуктов разложения исследуемого вещества считают подтвержденным, если поглощение регистрируется на наиболее сильных линиях этого соединения, не совпадающих с линиями посторонних соединений, также присутствующих в газовой фазе.

Б) В случае отсутствия предварительных сведений о возможных компонентах газовой фазы проводят сканирование широких диапазонов частот (в пределах диапазона 115-175 ГГц). Принадлежность спектральных линий, зарегистрированных в этом диапазоне, определяют по каталогам спектральных линий. Если зарегистрированная линия, согласно каталогу, может принадлежать нескольким соединениям, то сканируют окрестности других линий этих соединений, как описано в пункте 4А.

в) Для контроля присутствия выбранного соединения в газовой фазе на протяжении всего эксперимента устанавливают рабочую частоту спектрометра на спектральную линию этого соединения, не совпадающую с линиями посторонних соединений, также присутствующих в газовой фазе. Нагрев реакционного объема и кюветы спектрометра в режимах, описанных в пункте 3, начинают приблизительно через минуту после начала регистрации сигнала поглощения на рабочей частоте.

О появлении или исчезновении выбранного соединения из газовой фазы судят по регистрируемому сигналу поглощения на его линии. Считают, что соединение присутствует в газовой фазе, если значение поглощения превышает значение сигнала фона на 3⋅sr, где sr - стандартное отклонение сигнала, измеренного до начала нагрева.

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ, включающий в себя термообработку навески вещества в вакууме и спектральный анализ газообразных продуктов, отличающийся тем, что спектральный анализ продуктов термодеструкции взрывчатого вещества осуществляют в режиме реального времени с использованием спектрометрии в субтерагерцевом (субТГц) частотном диапазоне, при этом реакционный объем выполнен в виде двух пространственно разделенных вакуумируемых объемов, в одном из которых осуществляют нагрев ВВ, а в другом - анализ состава многокомпонентной среды, образующейся при терморазложении ВВ, по спектрам поглощения излучения на резонансных частотах того или иного продукта делается вывод о наличии или отсутствии его в продуктах разложения ВВ и относительном его количестве.
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО АНАЛИЗА ГАЗООБРАЗНЫХ ПРОДУКТОВ РАЗЛОЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО АНАЛИЗА ГАЗООБРАЗНЫХ ПРОДУКТОВ РАЗЛОЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 796.
13.01.2017
№217.015.808d

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам и может быть использовано для охраны помещений и объектов различного назначения. Устройство для охранной сигнализации содержит корпус, подпружиненный относительно корпуса подвижный элемент, магнитоэлектрический генератор, вал которого во взведенном...
Тип: Изобретение
Номер охранного документа: 0002602227
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81ec

Источник металлической плазмы (варианты)

Изобретение относится к источникам металлической плазмы (варианты) и может быть использовано для нанесения защитных, упрочняющих и декоративных покрытий методом катодного распыления на внутренние поверхности изделий, в частности на внутренние поверхности тел вращения, как открытых, так и...
Тип: Изобретение
Номер охранного документа: 0002601725
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8237

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного...
Тип: Изобретение
Номер охранного документа: 0002601772
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8298

Зарядное устройство емкостного накопителя энергии

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии. В зарядное устройство емкостного накопителя энергии, содержащее входной трехфазный...
Тип: Изобретение
Номер охранного документа: 0002601437
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82ae

Резонансный генератор импульсов

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора,...
Тип: Изобретение
Номер охранного документа: 0002601510
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82f2

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга. При этом четыре датчика размещены в экваториальной плоскости МК,...
Тип: Изобретение
Номер охранного документа: 0002601505
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.866c

Способ гиперскоростного метания металлического элемента и кумулятивное метающее устройство для его осуществления

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает...
Тип: Изобретение
Номер охранного документа: 0002603660
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.866e

Гольмиевый лазер для накачки параметрического генератора света

В гольмиевом лазере для накачки параметрического генератора света, включающем источник накачки и размещенные в двухпроходном оптическом резонаторе активный элемент, модулятор добротности, выполненный из материала с кристаллической структурой, новым является то, что модулятор добротности...
Тип: Изобретение
Номер охранного документа: 0002603336
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8675

Система термостабилизации приборного отсека космического аппарата

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы. Радиатор-излучатель выполнен в виде цилиндрического экрана с...
Тип: Изобретение
Номер охранного документа: 0002603690
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8678

Способ формирования гиперскоростного металлического компактного элемента и кумулятивное метающее устройство для его осуществления (варианты)

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны...
Тип: Изобретение
Номер охранного документа: 0002603684
Дата охранного документа: 27.11.2016
Показаны записи 21-26 из 26.
20.06.2019
№219.017.8d3a

Способ получения соединения антифрикционного сплава со сталью сваркой взрывом

Изобретение может найти применение при изготовлении многослойной конструкции подшипников скольжения, в частности, состоящих из стального основания и плакирующего слоя из антифрикционного сплава бронзы, содержащей свинец, например оловянно-свинцовой бронзы. Устанавливают пластину из...
Тип: Изобретение
Номер охранного документа: 0002692009
Дата охранного документа: 19.06.2019
31.07.2019
№219.017.ba6a

Способ сварки взрывом металлических листов

Изобретение может быть использовано для получения крупнотолщинных биметаллических деталей сваркой взрывом. Листовую заготовку из бронзы толщиной не менее 30 мм разделяют по меньшей мере на два фрагмента вдоль площади их соприкосновения. Оуществляют сборку пакета из листовой заготовки из...
Тип: Изобретение
Номер охранного документа: 0002695855
Дата охранного документа: 29.07.2019
03.10.2019
№219.017.d1a1

Способ получения высокотемпературной сверхпроводящей керамики bisrcacuo

Изобретение относится к области синтеза сверхпроводящей высокотемпературной керамики BiSrCaCuO, которая может быть использована для получения мишеней, стержней, проводников и выращивания кристаллов. Предложен способ, в котором взятые в стехиометрическом соотношении исходные порошки BiO; СаСО;...
Тип: Изобретение
Номер охранного документа: 0002701752
Дата охранного документа: 01.10.2019
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
16.06.2023
№223.018.7bdb

Термопластичный взрывчатый состав и способ его изготовления

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки -...
Тип: Изобретение
Номер охранного документа: 0002756081
Дата охранного документа: 27.09.2021
+ добавить свой РИД