×
27.07.2019
219.017.b987

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗНОГО ЗАГУСТИТЕЛЯ ДЛЯ ПЛАСТИЧНОЙ СМАЗКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам применения целлюлозы, более конкретно, к способам получения дисперсий целлюлозы как органического биоразлагаемого загустителя для смазочных материалов, в том числе пластичных смазок. Способ получения целлюлозного загустителя для смазок включает получение суспензии целлюлозы в среде протонодонорного осадителя - спирта, содержащего от 1 до 4 атомов углерода, или воды. Вначале целлюлозу вводят в смесь растворителей, содержащую N-метилморфолин N-оксид и полярный апротонный сорастворитель с параметром растворимости Гильдебранда от 22.5 до 25.0 МПа. Затем перемешивают полученную смесь при температуре от 80°С до 140°С до получения раствора целлюлозы с концентрацией 0.5-5 мас. % и добавляют осадителя с образованием путем фазового распада суспензии целлюлозы. Затем ее промывают осадителем до удаления смеси растворителей. Технический результат: повышение эффективной вязкости и предела текучести концентрированных суспензий целлюлозы. 1 табл., 7 пр.

Изобретение относится к способам применения целлюлозы, более конкретно, к способам получения дисперсий целлюлозы как органического биоразлагаемого загустителя для смазочных материалов, в том числе пластичных смазок.

К известным техническим решениям получения дисперсий целлюлозы, в т.ч. наноцеллюлозы, относятся обработка целлюлозного сырья с целью его измельчения благодаря интенсивному механическому воздействию, которое может сочетаться с предварительным, одновременным или многократным проведением процедур кислотного, щелочного или ферментативного гидролиза сырья (см., патент RU 2428482, кл. МПК С12Р 19/04, опубл. 10.09.2011). Полученные композиции характеризуются содержанием целлюлозы в количестве от 0.01 до 1 мас. %, тогда как предпочтительное содержание целлюлозы составляет от 0.03 до 0.5 мас. % в общей массе жидких композиций. Данные композиции модифицируют вязкостные свойства водной среды, а именно при добавлении целлюлозы в количестве не более 0.36 мас. % в воду приводит к увеличению ее вязкости по меньшей мере до 300 сП (0.3 Па⋅с), а также придает образцу предел текучести величиной по меньшей мере 1.0 дин/см2 (0.1 Па).

К недостаткам данного изобретения можно отнести получение низкоконцентрированных дисперсий (суспензий) и недостаточное загущение дисперсионной среды для придания ей свойств пластичной смазки.

Известен способ получения целлюлозного загустителя для смазок, включающий смешение целлюлозы в форме нановолокна с водой с получением водной дисперсии с содержанием нановолокна 2% мас. (см., заявка US 2018/79983, кл. МПК С10М 119/20, С10М 169/06, С10М 175/00, С10М 177/00, опубл. 22.03.2018).

Этот способ может быть принят как наиболее близкий аналог (прототип).

Недостаток прототипа заключается в том, что целлюлоза в виде нановолокон (торговой марки "BiNFi-s", "Sugino Machine Limited", Япония) недостаточно повышает вязкость смазки. Согласно данным производителя нановолокон эффективная вязкость их 2%-ной дисперсии при скорости сдвига 0.3 с-1 составляет 300 Па⋅с, тогда как предел текучести дисперсии равен 100 Па.

Задача изобретения заключается в получении концентрированной дисперсии целлюлозы, характеризующейся более высокими показателями эффективной вязкости и предела текучести.

Поставленная задача решается тем, что в способе получения целлюлозного загустителя для пластичной смазки, включающем получение суспензии целлюлозы в среде протонодонорного осадителя, его осуществляют путем введения целлюлозы в смесь растворителей, содержащую N-метилморфолин N-оксид и полярный апротонный сорастворитель с параметром растворимости Гильдебранда от 22.5 до 25.0 МПа1/2, перемешивания полученной смеси при температуре от 80°С до 140°С до получения раствора целлюлозы с концентрацией 0.5-5 мас. % и добавления протонодонорного осадителя - спирта, содержащего от 1 до 4 атомов углерода, или воды, с образованием путем фазового распада суспензии целлюлозы, которую затем промывают протонодонорным осадителем до удаления указанной смеси растворителей.

Согласно предлагаемому изобретению в качестве смеси апротонных полярных растворителей используют N-метилморфолин N-оксид и сорастворитель, характеризующийся параметром растворимости Гильдебранда, лежащим в пределах от 22.5 до 25.0 МПа1/2. В качестве таких сорастворителей могут выступать, например, диметилсульфоксид (24.9 МПа1/2), N,N-диметилформамид (24.9 МПа1/2), N,N-диметилацетамид (22.8 МПа1/2), N-метилпирролидон (23.0 МПа1/2), гексаметилфосфортриамид (23.3 МПа1/2), ацетонитрил (24.4 МПа1/2) и другие. В качестве протонодонорного инициатора фазового распада (осадителя целлюлозы) используют или воду, или любой спирт, содержащий не более четырех атомов углерода (например, метанол, этанол, этиленгликоль, пропанол, изопропанол, пропиленгликоль, глицерин и т.д.).

Нижеследующие примеры иллюстрируют предлагаемое техническое решение.

Дисперсию целлюлозного загустителя получают посредством фазового распада раствора целлюлозы, приготовленного в смеси N-метилморфолин N-оксида и диметилсульфоксида, взятых в соотношении 1 к 2.5, введением в этот раствор низкомолекулярного спирта - метанола (Пример 1), или более высокомолекулярного спирта, например, изобутанола (Пример 2); кроме того, для инициирования фазового распада можно использовать воду (Пример 3). Характеристикой дисперсий с одинаковым содержанием целлюлозного загустителя является эффективная вязкость: чем выше ее уровень, тем более данный целлюлозный загуститель способен загущать смазочную композицию. Поскольку с ростом температуры эффективная вязкость падает, композиции с большей вязкостью предназначены для использования при более высоких температурах. При прочих равных условиях для получения более вязкой композиции следует менее интенсивно разбавлять загуститель осадителем при его промывке для создания более концентрированной дисперсии (Пример 4).

Пример 5 (сравнительный) показывает повышение вязкости и предела текучести суспензии целлюлозы при том же массовом содержании целлюлозы, что в известном техническом решении (патент РФ 2428482).

Стоит отметить, что рост концентрации загустителя в составе смазочной композиции может благоприятствовать снижению износа (Пример 6).

Характеристикой смазочных композиций является способность снижать коэффициент трения между трущимися поверхностями. Коэффициент трения между стальными поверхностями, измеренный при использовании пары трения шар-плоскость, силы трения 30 Н и линейной скорости контртела 1.5 м/с, составляет 0.57. Смазывание поверхностей полученными дисперсиями снижает коэффициент трения до уровня 0.1-0.19, причем конкретное значение зависит от природы дисперсионный среды и понижается с повышением содержания целлюлозного загустителя.

Способность целлюлозного загустителя к повышению вязкости среды и снижению коэффициента трения при изменении условий его получения не ухудшается (Пример 7).

Пример 1

Для получения раствора целлюлозы один ее грамм добавляют в комплексный растворитель, состоящий из 14 грамм N-метилморфолин N-оксида и 35 грамм диметилсульфоксида. При температуре 120°С смесь перемешивают на устройстве роторного типа в течение 20 минут для получения прозрачного 2 мас. %-ного раствора целлюлозы желтого окраса. Затем, не прекращая интенсивного перемешивания, прибавляют 100 мл метанола. Полученную в результате фазового распада массу охлаждают, промывают на фильтре Шотта с использованием колбы Бунзена и водоструйного вакуумного насоса последовательным прибавлением метанола (общим объемом 200 мл) для удаления остатков N-метилморфолин N-оксида и диметилсульфоксида. После промывания массу извлекают (не давая ей высохнуть под вакуумом) и разбавляют метанолом для получения 2 мас. %-ной дисперсии. Полученная дисперсия представляет собой вязкопластичный органогель с эффективной вязкостью, измеренной при скорости сдвига 0.3 с-1 и 25°С, 1500 Па⋅с и пределом текучести 460 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 2

К 2 мас. %-ному раствору целлюлозы в смеси N-метилморфолин N-оксида и диметилсульфоксида, полученному по способу, указанному в примере 1, нагретому до 120°С и интенсивно перемешиваемому на роторном перемешивающем устройстве, прибавляют 100 мл изобутанола. Полученную в результате фазового распада массу охлаждают и промывают как указанно в примере 1, но с использованием для промывки изобутанола вместо метанола. Полученная дисперсия, содержащая 2 мас. % целлюлозного загустителя, представляет собой вязкопластичный органогель, характеризующийся эффективной вязкостью 1300 Па⋅с и пределом текучести 400 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 3

К 2 мас. %-ному раствору целлюлозы в смеси N-метилморфолин N-оксида и диметилсульфоксида, полученному по способу, указанному в примере 1, нагретому до 120°С и интенсивно перемешиваемому на роторном перемешивающем устройстве, прибавляют 100 мл воды. Полученную в результате фазового распада массу охлаждают и промывают как указанно в примере 1, но с использованием для промывки воды вместо метанола. Полученная дисперсия, содержащая 2 мас. % целлюлозного загустителя, представляет собой вязкопластичный гидрогель, характеризующийся эффективной вязкостью 1600 Па⋅с и пределом текучести 490 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 4

Дисперсию получают аналогично способу, указанному в примере 1, но при промывании целлюлозу разбавляют для достижения уровня ее концентрации 3 мас. %. Полученная дисперсия, содержащая 3 мас. % целлюлозного загустителя, представляет собой вязкопластичный органогель, характеризующийся эффективной вязкостью 2500 Па⋅с и пределом текучести 750 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 5 (сравнительный)

Дисперсию получают аналогично способу, указанному в примере 3, но при промывании целлюлозу разбавляют для достижения уровня ее концентрации 0.36 мас. %. Полученная дисперсия, содержащая 0.36 мас. % целлюлозного загустителя, представляет собой вязкопластичный гидрогель, характеризующийся эффективной вязкостью 3.0 Па⋅с и пределом текучести 0.9 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 6

Дисперсию получают аналогично способу, указанному в примере 3, но при промывании целлюлозу разбавляют для достижения уровня ее концентрации 3.2 мас. %. Полученная дисперсия, содержащая 3.2 мас. % целлюлозного загустителя, представляет собой вязкопластичный гидрогель, характеризующийся эффективной вязкостью 2300 Па⋅с и пределом текучести 690 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 7

Для получения раствора целлюлозы два ее грамма добавляют в комплексный растворитель, состоящий из 35 грамм N-метилморфолин N-оксида и 14 грамм диметилформамида. При температуре 140°С смесь перемешивают на устройстве роторного типа в течение 20 минут для получения прозрачного 4 мас. %-ного раствора целлюлозы желтого окраса. Затем, не прекращая интенсивного перемешивания, прибавляют 100 мл метанола. Полученную в результате фазового распада массу охлаждают и промывают как указанно в примере 1. Полученная дисперсия, содержащая 2 мас. % целлюлозного загустителя, представляет собой вязкопластичный органогель, характеризующийся эффективной вязкостью 1500 Па⋅с и пределом текучести 440 Па.

Результаты по предлагаемому способу представлены в таблице.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в повышении эффективной вязкости и предела текучести концентрированных суспензий целлюлозы.

Таким образом, техническое решение позволяет получать целлюлозные загустители для использования в составе смазочных композиций, предназначенных для широких областей применения.

Способ получения целлюлозного загустителя для пластичной смазки, включающий получение суспензии целлюлозы в среде протонодонорного осадителя, отличающийся тем, что его осуществляют путем введения целлюлозы в смесь растворителей, содержащую N-метилморфолин N-оксид и полярный апротонный сорастворитель с параметром растворимости Гильдебранда от 22.5 до 25.0 МПа, перемешивания полученной смеси при температуре от 80°С до 140°С до получения раствора целлюлозы с концентрацией 0.5-5 мас. % и добавления протонодонорного осадителя - спирта, содержащего от 1 до 4 атомов углерода, или воды с образованием путем фазового распада суспензии целлюлозы, которую затем промывают протонодонорным осадителем до удаления указанной смеси растворителей.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 141.
14.12.2018
№218.016.a76b

Способ переработки тяжелых нефтяных фракций

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей...
Тип: Изобретение
Номер охранного документа: 0002674773
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a8ec

Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения...
Тип: Изобретение
Номер охранного документа: 0002675249
Дата охранного документа: 18.12.2018
20.12.2018
№218.016.a928

Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, цветных асфальтобетонов, а также в пищевой и...
Тип: Изобретение
Номер охранного документа: 0002675361
Дата охранного документа: 19.12.2018
08.02.2019
№219.016.b80a

Нанокомпозиционный биоцидный материал

Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас.% неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас.%...
Тип: Изобретение
Номер охранного документа: 0002679147
Дата охранного документа: 06.02.2019
15.02.2019
№219.016.ba8f

Нанокомпозиционный полимерный биоцидный материал и способ его получения

Группа изобретений относится к области медицины. Предложен нанокомпозиционный полимерный биоцидный материал, содержащий: 5-10 мас.% модифицированной неорганической слоистой глины, полученной из суспензии, содержащей неорганическую слоистую глину и модификатор при их массовом соотношении от...
Тип: Изобретение
Номер охранного документа: 0002679804
Дата охранного документа: 13.02.2019
15.03.2019
№219.016.dfe5

Способ получения биоспецифического гемосорбента для выделения протеиназ

Изобретение относится к биотехнологии. Способ предусматривает получение гемосорбента путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора, содержащего 0,1-0,9% мас. овомукоида из белка утиных яиц,...
Тип: Изобретение
Номер охранного документа: 0002681883
Дата охранного документа: 13.03.2019
29.03.2019
№219.016.f5b5

Сополимер норборнена с акрилатом, способ его получения и способ получения нанокомпозита на его основе

Настоящее изобретение относится к синтезу сополимеров норборнена с трет-бутилакрилатом или метилакрилатом. Описан сополимер норборнена и акрилата структурной формулы: где R=Me, Bu, n и m - степени, определяющие состав сополимеров, n=12-75% моль, m=100-n% моль, имеющий величину средневесовой...
Тип: Изобретение
Номер охранного документа: 0002456304
Дата охранного документа: 20.07.2012
30.03.2019
№219.016.f92e

Способ регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом...
Тип: Изобретение
Номер охранного документа: 0002683283
Дата охранного документа: 27.03.2019
20.04.2019
№219.017.3596

Аддитивные поли(3-три (н-алкокси)силилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения газообразных углеводородов с применением мембран на их основе

Изобретение относится к синтезу аддитивных полимеров. Предложены аддитивные поли(3-три(н-алкокси)силилтрицикло[4.2.1.0]нон-7-ены) общей формулы (I), где R=СН, СН, -CH, -СН, -CH, степень полимеризации n=1600-6000, средневесовая молекулярная масса M 7.0⋅10÷1.9⋅10 г/моль и индекс полидисперсности...
Тип: Изобретение
Номер охранного документа: 0002685429
Дата охранного документа: 18.04.2019
27.04.2019
№219.017.3cc0

Способ получения 5-винил-2-норборнена

Предложен способ получения 5-винил-2-норборнена, включающий термическую содимеризацию 1,3-бутадиена и циклопентадиена по реакции Дильса-Альдера в присутствии ингибитора радикальной полимеризации - 4-трет-бутилкатехола, охлаждение реакционной смеси и выделение целевого продукта, где в...
Тип: Изобретение
Номер охранного документа: 0002686090
Дата охранного документа: 24.04.2019
Показаны записи 11-16 из 16.
18.03.2020
№220.018.0cbc

Способ получения полимерной пленки

Изобретение относится к способу получения полимерных гидрофобных пленок и может применяться для получения специальных покрытий для предотвращения коррозии металлических поверхностей, антиобледенительных покрытий для элементов строительных конструкций, самоочищающихся деталей транспортных...
Тип: Изобретение
Номер охранного документа: 0002716795
Дата охранного документа: 16.03.2020
21.03.2020
№220.018.0e74

Способ получения основы для пластырей и гелей (варианты)

Изобретение относится к медицинской и химико-фармацевтической промышленности, а именно к вариантам способа получения основы для пластырей или гелей, которые могут быть использованы в лечебно-профилактических учреждениях, в домашних условиях для наружного применения в качестве лечебного средства...
Тип: Изобретение
Номер охранного документа: 0002717086
Дата охранного документа: 18.03.2020
21.06.2020
№220.018.28c2

Способ получения клея-расплава

Изобретение относится к области клеящих материалов и, более конкретно, к способам получения полимерных клеев-расплавов, предназначенных для формирования адгезионных соединений между различными материалами, в том числе металлами, характеризующихся высокой прочностью образованной связи в...
Тип: Изобретение
Номер охранного документа: 0002724047
Дата охранного документа: 19.06.2020
12.07.2020
№220.018.31f0

Растворитель для поликетона и способ переработки поликетона с его применением

Изобретение относится к области физической химии высокомолекулярных соединений, конкретно к составу растворителя для переработки алифатического поликетона, и может быть использовано для получения полимерных пленок, мембран, волокон и других полезных изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002726252
Дата охранного документа: 10.07.2020
15.07.2020
№220.018.3246

Способ получения полимерного нанокомпозита с наполнителем из асфальтенов

Изобретение относится к области химии высокомолекулярных соединений, к способу получения полимерных нанокомпозитов с наполнителем из асфальтенов, и предназначено для утилизации или переработки смолистых высокомолекулярных составляющих «тяжелых» нефтей - асфальтенов, в полимерные продукты с...
Тип: Изобретение
Номер охранного документа: 0002726356
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.444b

Растворитель и способ переработки поликетона и/или полиамида с его использованием (варианты)

Настоящее изобретение относится к растворителю для полиамида и/или поликетона, а также к способу переработки полимера путем растворения его в растворителе. Изобретение может быть использовано для получения полимерных пленок, мембран, волокон и других изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002738836
Дата охранного документа: 17.12.2020
+ добавить свой РИД