×
23.07.2019
219.017.b78d

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий. Способ включает заполнение рабочего контейнера электропроводящими пористыми гранулами из сульфированного сополимера стирол-дивинил бензола, заполненные электролитом, закрепление блиска с возможностью вращения на держателе и последовательное погружение каждой лопатки блиска в контейнер с вибрирующими электропроводящими гранулами. Блиск подключают к аноду, а гранулы к катоду. Используют рабочий контейнер в виде коробки, выполненный с возможностью одеваться без касания на лопатку блиска. Рабочий контейнер для электрополирования лопаток блиска выполняют из электропроводного материала в виде коробки с открытым верхом. Контейнер выполняют электроизолированным с внешней стороны и с верхней его открытой стороны, снабженным вибратором, и устройством для его возвратно-поступательного перемещения, обеспечивающего его одевание с зазором на лопатку блиска. Технический результат: повышение качества обработки и однородности обработки поверхности деталей. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.

Рабочие лопатки компрессора газотурбинного двигателя (ГТД) в процессе эксплуатации подвергаются воздействиям значительных динамических и статических нагрузок, а также эрозионному разрушению. Исходя из предъявляемых к эксплуатационным свойствам требований, для изготовления лопаток компрессора газовых турбин применяются титановые сплавы, которые по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.

Однако лопатки турбин обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.

Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987.], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.86., а также Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3].

Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91.]

Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности лопаток блисков.

Известен также способ электролитно-плазменного полирования деталей из титановых сплавов [Патент РФ №2373306, МПК C25F 3/16. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов. Бюл. №32, 2009], включающий погружение детали в электролит, содержащий окислитель, фторсодержащее соединение и воду, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.

Однако известный способ [Патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.

Наиболее близким техническим решением к заявляемому способу является способ ионного полирования металлической детали, заключающийся в заполнении электропроводящими гранулами рабочий контейнер установки, выполненный их электропроводного материала, закрепление детали на держателе, погружении детали в электропроводящие гранулы, заполняющие контейнер, подключении детали к аноду, а контейнера к катоду. [WO 2017186992 - |Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method. Опубл. 2017.11.02]. Причем взаимодействие обрабатываемой поверхности детали с гранулами обеспечивается за счет постоянного трения детали о гранулы и полирование до получения заданной шероховатости поверхности детали.

Однако известный способ [WO 2017186992] не позволяет обеспечить высокое качество поверхности детали за счет неравномерности взаимодействия гранул с обрабатываемой поверхностью.

Наиболее близким техническим решением к заявляемому устройству является рабочий контейнер для электрополирования лопаток блиска включающий рабочий контейнер, выполненный из электропроводного материала [WO 2017186992 - |Methodforsmoothingandpolishingmetalsviaiontransportbvmeansoffreesolidbodies, andsolidbodiesforcarrvingoutsaidmethod. Опубл. 2017.11.02].

Однако это устройство [WO 2017186992] не может быть применено к обработке лопаток блисков, имеющих большие размеры, поскольку при обработке изделий, имеющих значительную площадь поверхности выделяется чрезмерное количество тепла, что делает процесс нестабильным и приводит к возникновению дефектов на поверхности лопаток. Кроме того, обработка крупных изделий, к которым относятся блиски компрессора ГТД, требуется значительное количество электроэнергии и при реализации процесса полирования в этих условиях резко снижается к.п.д. обработки.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества и надежности процесса полирования блисков.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества обработки и надежности процесса полирования лопаток блисков за счет обеспечения равномерного взаимодействия гранул с поверхностью обрабатываемой детали и уменьшения площади обработки.

Техническим результатом предлагаемого изобретения является повышение качества и однородности обработки поверхности деталей.

Поставленная задача решается за счет того, что в способе электрополирования лопаток блиска, включающем заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружении блиска в электропроводящие гранулы, заполняющие рабочий контейнер, подключении блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска в отличие от прототипа используют рабочий контейнер в виде коробки, выполненной с возможностью одеваться с зазором без касания на лопатку блиска и электроизолированную с внешней стороны и с верхней его открытой стороны, а блиск закрепляют на держателе с возможностью его поворота вокруг своей оси, устанавливают текущую лопатку блиска перед рабочим контейнером, а погружение блиска в электропроводящие гранулы осуществляют одеванием рабочего контейнера на текущую лопатку при его вибрации, обеспечивающий колебание электропроводящих гранул внутри рабочего контейнера, причем в процессе полирования обеспечивают колебательные движения гранул во всем объеме рабочего контейнера, а после окончания обработки текущей лопатки, снимают рабочий контейнер с обработанной лопатки, поворачивают держателем блиск на шаг, равный шагу расположения лопаток на блиске и рабочий контейнер вновь при его вибрации одевается на очередную обрабатываемую лопатку, причем указанный цикл повторяют до окончания полирования всех лопаток блиска.

Кроме того возможны следующие приемы способа: используют рабочий контейнер выполненный из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера; колебательные движения гранул, обеспечивают вибрацией контейнера, совершающего колебательные движения в двух плоскостях с частотой от 15…40 кГц, амплитудой от 2 до 8 мм; в качестве гранул используют, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм; используют пористые гранулы из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы; в качестве материала гранул используют сульфированный сополимер стирол-дивинилбензола; полирование осуществляют в среде аргона, а в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л; полирование проводят при плотности тока от 0,2-10 А/см2.

Поставленная задача решается также за счет того, что рабочий контейнер для электрополирования лопаток блиска выполненный из электропроводного материала в виде коробки с открытым верхом, в отличие от прототипа контейнер выполнен электроизолированным с внешней стороны и с верхней его открытой стороны, снабжен вибратором и устройством для его возвратно-поступательного перемещения, обеспечивающего его одевание с зазором на лопатку блиска.

Кроме того, возможны следующие дополнительный элемент рабочего контейнера: открытая часть рабочего контейнера снабжена эластичным уплотнительным элементом, выполненным с возможностью герметизировать полость рабочего контейнера при его одевании на лопатку блиска.

Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представленными ниже примерами.

Изобретение поясняется следующей схемой. На фиг. 1-3 показан процесс электрополирования лопатки блиска (приведен фрагмент блиска). На фиг. 1 представлен блиск перед полированием текущей лопатки, на фиг. 2 - блиск в процессе полирования текущей лопатки, на фиг. 3 - блиск, после окончания полирования текущей лопатки. Фигуры 1-3 содержат: 1 - блиск; 2 - лопатка блиска; 3 - текущая (обрабатываемая) лопатка блиска; 4 - рабочий контейнер; 5 - электропроводные гранулы; 6 - внешний контейнер установки полирования. (Стрелками показано направление перемещения рабочего контейнера)

Заявляемый способ электрополирования лопаток блиска осуществляется следующим образом (фиг. 1-3). Обрабатываемый блиск 1 закрепляют на держателе (не показан) погружают в рабочий контейнер 4 с электропроводящими гранулами 5, прикладывают к обрабатываемому блиску 1 положительный электрический потенциал (анод), а к электропроводящим гранулам - отрицательный электрический потенциал (катод), придают электропроводящим гранулам 5 колебательное движение по одному из выбранных режимов (колебательные движения в двух плоскостях с частотой от 15…40 кГц, амплитудой от 2 до 8 мм). При этом колебательные движения электропроводящих гранул 5 могут быть созданы за счет колебательных движений рабочего контейнера 4 или блиска 1. Блиск 1 закрепляют на держателе с возможностью поворота блиска 1 вокруг своей оси, устанавливают текущую лопатку блиска 3 перед рабочим контейнером 4 (фиг. 1), а погружение текущей лопатки блиска 3 в электропроводящие гранулы 4 осуществляют одеванием рабочего контейнера 4 на текущую лопатку блиска 3 при его вибрации, обеспечивающей колебание электропроводящих гранул 5 внутри рабочего контейнера 4 (фиг. 2). Причем в процессе полирования текущей лопатки блиска 3 обеспечивают колебательные движения гранул во всем объеме рабочего контейнера, а после окончания обработки текущей лопатки блиска 3, рабочий контейнер 4 сходит с текущей лопатки блиска 4 (фиг. 3), держатель поворачивает блиск 1 вокруг его оси на шаг, равный шагу расположения лопаток 2 на блиске 1 и рабочий контейнер 4 вновь при его вибрации одевается на очередную обрабатываемую лопатку, которая становится текущей (обрабатываемой в данный момент) лопаткой 3. Указанный цикл последовательного полирования лопаток блиска 2 повторяют до окончания полирования всех лопаток блиска 2.

Для полирования каждой лопатки блиска 2 используют рабочий контейнер 4 в виде коробки, выполненной с возможностью одеваться с зазором без касания на текущую (обрабатываемую в данный момент) лопатку блиска 3. Рабочий контейнер 4 выполняют электроизолированным с внешней его стороны и с верхней его открытой стороны. Причем для лучшей герметизации рабочего контейнера 4, с целью устранения возможности выпадения из него электропроводящих гранул 5, рабочий контейнер 4 снабжают в его открытой верхней части эластичным уплотнительным элементом, обеспечивающим плотное прижатие рабочего контейнера 4 к поверхности блиска 1.

Процесс полирования может осуществляться при плотности тока 0,2-10 А/см2. В качестве электропроводящих гранул 5 могут использоваться, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм, а также пористые гранулы 5 из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы 5, например, гранулы 5 выполненные из сульфированный сополимер стирол-дивинилбензола. Полирование может осуществляться в среде аргона, особенно при полировании деталей из титана и титановых сплавов, в частности лопаток блиска 2 турбины. При полировании блиска 1 из титанового сплава в качестве электролита может использоваться водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л. Кроме того, в процессе полирования может дополнительно производится относительное движение обрабатываемого блиска 1 и рабочего контейнера 4 в режимах колебательного движения, возвратно-поступательного движения, либо их сочетания. Внешний контейнер установки полирования используется для сбора выпавших из рабочего контейнера 4 электропроводящих гранул 5 и в качестве защитного кожуха. Процесс полирования осуществляют до получения заданной величины шероховатости поверхности лопаток блиска 2.

Колебательные движения электропроводящих гранул 5 позволяют обеспечить равномерное воздействие на всю обрабатываемую поверхность текущей лопатки 3 и тем самым повысить качество и однородность ее поверхности. Кроме того, за счет создание однородных условий для всего объема гранул обеспечивается равномерное протекание электрических процессов, в частности ионного переноса при обработки лопатки. Использование только взаимного перемещения детали и гранул не может обеспечить равномерности из-за разности скоростей взаимодействия поверхности детали с гранулами (например, при простом вращении детали в среде гранул, когда линейная скорость относительного движения между гранулами и деталью, в зависимости от удаления от центра вращения детали до ее периферии).

При осуществлении способа происходят следующие процессы. При колебании массы гранул происходят их столкновения с обрабатываемой поверхностью детали (бомбардировка поверхности). При этом столкновения между гранулами происходят также и во всем объеме рабочего контейнера, создавая таким образом для всего объема гранул равномерные условия протекания электрических процессов. При этом электрические процессы между деталью (анодом) и гранулами (катодом) происходят за счет контакта массы электропроводных гранул друг с другом и с находящимся под отрицательным потенциалом рабочего контейнера и/или введенных в массу гранул электродов (катодов), находящихся под отрицательным потенциалом. При столкновениях гранул с микровыступами на обрабатываемой поверхности детали происходит ионный унос массы с микровыступов, в результате чего происходит выравнивание поверхности, уменьшается ее шероховатость и происходит полирование поверхности.

Пример. Обработке подвергали лопатки блиска из титанового сплава марки ВТ9. Обрабатываемые лопатки блиска последовательно погружали в рабочий контейнер с пористыми сферическими гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола. Полирование производили в среде аргона. В качестве электролита-заполнителя гранул использовали водный раствор смеси NH4F и KF при содержании NH4F - 6 г/л и KF - 33 г/л. Прикладывали к детали положительное, а к гранулам (через корпус контейнера) - отрицательное напряжение. Процесс полирования проводили при непрерывном колебательном движении гранул амплитудой 22 кГц. Процесс полирования проводили при плотности тока 1,8 А/см2.

Условия обработки по способу-прототипу [WO 2017186992] были следующие. Взаимодействие лопаток блиска и гранул за счет вращения блиска в объеме гранул. Обрабатываемые лопатки погружали рабочий контейнер с пористыми сферическими гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-

дивинилбензола. Рабочий контейнер обеспечивал погружение сразу нескольких лопаток блиска в гранулы. Полирование производили в среде аргона. В качестве электролита-заполнителя гранул использовали водный раствор смеси NH4F и KF при содержании NH4F - 6 г/л и KF - 33 г/л. Прикладывали к детали положительное, а к гранулам (через корпус контейнера) - отрицательное напряжение. Процесс полирования проводили при плотности тока 1,8 А/см2.

Сравнивались величины шероховатости на различных участках детали после сравниваемых способах обработки. Исходная шероховатость поверхности деталей составляла Ra 0,72 мкм. После обработки разброс шероховатости на различных участках поверхности обработанных деталей составляла: для прототипа от Ra 0,14 мкм до Ra 0, 28 мкм, для обработанных по предлагаемому способу от Ra 0,12 мкм до Ra 0, 16 мкм. Кроме того, при обработке по способу-прототипу наблюдался перегрев среды гранул и блиска из-за необходимости использования большей энергии, поскольку площадь обработки в этом случае была значительно большей, чем по предлагаемому способу.

Кроме того, были проведены исследования следующих режимов обработки деталей из титановых сплава, (ВТ-1, ВТ3-1, ВТ8). За отрицательный результат принимался режим обработки дающий разброс значений шероховатости по поверхности детали более ΔRa 0,05 мкм. Колебательное движение гранул - удовлетворительный результат (У.Р.), обеспечение только трения гранул о поверхность обрабатываемой детали неудовлетворительный результат (Н.Р.). Колебательные движения в двух плоскостях с частотой: 12 кГц (Н.Р.), 15 кГц (У.Р.), 25 кГц (У.Р.), 30 кГц (У.Р.), 35 кГц (У.Р.), 40 кГц (У.Р.), 45 кГц (Н.Р.).

Размеры и форма гранул: сферические частицы диаметром: 0,2 мм (Н.Р.), 0,4 мм (У.Р.), 0,6 мм (У.Р.), 0,8 мм (У.Р.), 1,2 мм (У.Р.), 0, 14 мм (Н.Р.). Овальные частицы размерами от 0,3 до 1,4 мм. 0,2 мм (Н.Р.), 0,3 мм (У.Р.), 0,5 мм (У.Р.), 0,8 мм (У.Р.), 1,2 мм (У.Р.), 1,4 мм (У.Р.), 0, 16 мм (Н.Р.).

Улучшение качества электрополирования лопаток блиска по предлагаемому способу, во всех проведенных случаях обработки указывает на то, что использование способа электрополирования лопаток блиска, включающего следующие признаки: заполнение электропроводящими гранулами рабочего контейнера; закрепление блиска на держателе; погружении блиска в электропроводящие гранулы, заполняющие рабочий контейнер; подключении блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска; использование рабочего контейнера в виде коробки, выполненной с возможностью одеваться с зазором без касания на лопатку блиска и электроизолированный с внешней стороны и с верхней его открытой стороны; закрепление блиска на держателе с возможностью его поворота вокруг своей оси; устанавка текущей лопатки блиска перед рабочим контейнером; погружение блиска в электропроводящие гранулы одеванием рабочего контейнера на текущую лопатку при его вибрации, обеспечивающей колебание электропроводящих гранул внутри рабочего контейнера; обеспечение в процессе полирования колебательных движений гранул во всем объеме рабочего контейнера; снятие после окончания обработки текущей лопатки, рабочего контейнера с обработанной лопатки; поворот держателем блиска на шаг, равный шагу расположения лопаток на блиске; одевание рабочего контейнера вновь при его вибрации на очередную обрабатываемую лопатку; повторение указанного цикла до окончания полирования всех лопаток блиска, а также использование следующих признаков способа: используют рабочий контейнер выполненный из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера; колебательные движения гранул, обеспечивают вибрацией рабочего контейнера, совершающего колебательные движения в двух плоскостях с частотой от 15…40 кГц, амплитудой от 2 до 8 мм; в качестве гранул используют, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм; используют пористые гранулы из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы; в качестве материала гранул используют сульфированный сополимер стирол-дивинилбензола; полирование осуществляют в среде аргона, а в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л; полирование проводят при плотности тока от 0,2-10 А/см2, а также использование рабочего контейнера для электрополирования лопаток блиска выполненного из электропроводного материала в виде коробки с открытым верхом, электроизолированным с внешней стороны и с верхней его открытой стороны, снабженным вибратором, и устройством для его возвратно-поступательного перемещения, обеспечивающего его одевание с зазором на лопатку блиска, с открытой частью рабочего контейнера снабженной эластичным уплотнительным элементом, выполненным с возможностью герметизации полости рабочего контейнера при его одевании на лопатку блиска, позволяют достичь технического результата заявляемого способа - повышение качества и однородности обработки поверхности деталей.


СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ЭЛЕКТРОПОЛИРОВАНИЯ ЛОПАТОК БЛИСКА И РАБОЧИЙ КОНТЕЙНЕР ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 146.
12.04.2023
№223.018.424c

Способ обработки поверхности на стальных деталях

Изобретение относится к металлургической промышленности, а именно к комбинированной упрочняющей химико-термической обработке поверхности стальных изделий и инструмента, работающих в условиях локального изнашивания. Способ обработки изношенных локальных участков поверхности стальной детали...
Тип: Изобретение
Номер охранного документа: 0002766388
Дата охранного документа: 15.03.2022
12.04.2023
№223.018.42b0

Разъемный гребной винт

Изобретение относится к области судостроения, а именно к водоходным движителям, обеспечивающим движение и маневрирование судна. Гребной винт содержит ступицу и как минимум две съемные лопасти, каждая из которых имеет корневую часть, выполненную с фасонной поверхностью типа «ласточкин хвост» для...
Тип: Изобретение
Номер охранного документа: 0002757989
Дата охранного документа: 25.10.2021
12.04.2023
№223.018.46ca

Универсальный шариковый расходомер жидкости

Изобретение относится к измерительной технике и может использоваться в расходометрии любых жидкостей - электропроводных и неэлектропроводных, прозрачных и непрозрачных, химически агрессивных и пожароопасных, взрывоопасных, ядовитых и опасных для окружающей среды - в химической, нефтедобывающей...
Тип: Изобретение
Номер охранного документа: 0002761416
Дата охранного документа: 08.12.2021
12.04.2023
№223.018.470f

Цифровой преобразователь расхода электропроводной жидкости

Изобретение относится к измерительной технике и электронному приборостроению и может быть использовано в расходометрии электропроводных жидкостей, например воды и водных растворов солей, щелочей и кислот, электропроводных органических и неорганических химических соединений. Преобразователь...
Тип: Изобретение
Номер охранного документа: 0002755715
Дата охранного документа: 20.09.2021
23.04.2023
№223.018.5203

Способ получения сорбента для очистки воды от нефтезагрязнений

Изобретение относится к получению сорбентов для очистки воды от нефтепродуктов. Сущность изобретения: экстрагированную сечку сахарной свеклы подвергают высушиванию до содержания влаги не более 10 мас.%, измельчают с получением частиц заданного гранулометрического состава. Высушенное и...
Тип: Изобретение
Номер охранного документа: 0002732274
Дата охранного документа: 14.09.2020
09.05.2023
№223.018.52d9

Интегральный перестраиваемый излучатель оптического вихревого пучка

Изобретение относится к оптике, в частности к лазерной технике, и может быть использовано в радиофотонных и оптических системах связи. Интегральный перестраиваемый излучатель оптического вихревого пучка содержит прямой оптический волновод, микрокольцевой резонатор радиусом 30 мкм с глухими...
Тип: Изобретение
Номер охранного документа: 0002795166
Дата охранного документа: 28.04.2023
14.05.2023
№223.018.5544

Способ сравнительной оценки загрязнения воздуха по высшим растениям

Изобретение относится к области защиты окружающей среды и может быть использовано в биоиндикации атмосферного воздуха. Оценку загрязнения воздуха по высшим растениям проводят по сравнению усредненных величин модулей разницы фрактальной размерности правой и левой части листьев. При отличии...
Тип: Изобретение
Номер охранного документа: 0002736935
Дата охранного документа: 23.11.2020
15.05.2023
№223.018.5910

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к способу комбинированной обработки изделия из быстрорежущей стали. Способ включает создание ультрамелкодисперсной структуры посредством холодной осадки, закалку при температуре 900-1100°С, ионное азотирование стального изделия, при этом после закалки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002760515
Дата охранного документа: 25.11.2021
15.05.2023
№223.018.5911

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к способу комбинированной обработки изделия из быстрорежущей стали. Способ включает создание ультрамелкодисперсной структуры посредством холодной осадки, закалку при температуре 900-1100°С, ионное азотирование стального изделия, при этом после закалки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002760515
Дата охранного документа: 25.11.2021
16.05.2023
№223.018.5dab

Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой...
Тип: Изобретение
Номер охранного документа: 0002757352
Дата охранного документа: 14.10.2021
Показаны записи 131-140 из 141.
13.03.2020
№220.018.0b3f

Способ электрополирования металлической детали

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду и подачу противоположного...
Тип: Изобретение
Номер охранного документа: 0002716292
Дата охранного документа: 11.03.2020
13.03.2020
№220.018.0b5a

Способ обработки перфорационных отверстий и внутренней полости лопатки турбомашины

Изобретение относится к сухому электрохимическому полированию лопаток турбомашин. Способ включает помещение лопатки в среду гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с удалением микровыступов с...
Тип: Изобретение
Номер охранного документа: 0002716330
Дата охранного документа: 11.03.2020
21.03.2020
№220.018.0ebe

Способ оценки адгезионной прочности многослойного покрытия

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам оценки адгезионной прочности покрытия с основой. Способ заключается в нанесении слоев испытуемого покрытия на образец в виде металлической пластины, выполнении в покрытии поперечного надреза до подложки и...
Тип: Изобретение
Номер охранного документа: 0002717142
Дата охранного документа: 18.03.2020
20.04.2020
№220.018.163d

Способ электрополирования моноколеса с лопатками и устройство для его реализации

Изобретение относится к электрополированию лопаток моноколеса и может быть использовано в турбомашиностроении при обработке лопаток моноколеса компрессоров газотурбинных двигателей и установок. Способ включает электрохимическое полирование лопаток моноколеса с последующим полированием в среде...
Тип: Изобретение
Номер охранного документа: 0002719217
Дата охранного документа: 17.04.2020
03.06.2020
№220.018.23c5

Способ обработки полой лопатки турбомашины с перфорационными отверстиями

Изобретение относится к области машиностроения и может быть использовано для сухого электрохимического полирования перфорационных отверстий в полых лопатках турбомашин. Способ включает помещение лопатки в среду гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002722544
Дата охранного документа: 01.06.2020
27.06.2020
№220.018.2bbe

Способ электрополирования детали

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду и подачу...
Тип: Изобретение
Номер охранного документа: 0002724734
Дата охранного документа: 25.06.2020
04.07.2020
№220.018.2e51

Способ электролитно-плазменной обработки детали

Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой...
Тип: Изобретение
Номер охранного документа: 0002725516
Дата охранного документа: 02.07.2020
02.08.2020
№220.018.3c3e

Способ оценки прочности сцепления многослойного покрытия

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой, и может быть использовано для оценки прочности сцепления слоев в многослойном покрытии. Способ оценки прочности сцепления многослойного покрытия...
Тип: Изобретение
Номер охранного документа: 0002728732
Дата охранного документа: 30.07.2020
20.05.2023
№223.018.67f8

Способ подбора дозы ионной имплантации для активации поверхности детали из легированной стали перед азотированием

Изобретение относится к способу подбора дозы ионной имплантации для активации поверхности детали из легированной стали перед азотированием. Используют одинаковые по форме и размерам плоские образцы из легированной стали для испытания на разрыв толщиной, равной толщине заданного азотированного...
Тип: Изобретение
Номер охранного документа: 0002794640
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6a6d

Способ азотирования детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых...
Тип: Изобретение
Номер охранного документа: 0002795620
Дата охранного документа: 05.05.2023
+ добавить свой РИД