×
20.03.2013
216.012.304f

СПОСОБ ФОРМИРОВАНИЯ ПРОВОДНИКОВ В НАНОСТРУКТУРАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников. Техническим результатом изобретения является уменьшение размеров формируемых проводников, расширение используемых материалов, упрощение требований к соотношению размеров в маске. 1 ил.
Основные результаты: Способ формирования проводников в наноструктурах, включающий нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников.
Реферат Свернуть Развернуть

Изобретение относится к технологии создания сложных проводящих структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологиях, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств.

Известен способ создания элементов проводящей структуры на диэлектрических слоях (см. описание к заявке ФРГ N 19503178, Н01L 21/60, 1997 /1/). Способ включает разрушение оксидного слоя на поверхности алюминия и осаждение упрочняющего материала. Для этого упрочняющий материал, находящийся на подложке, переносится с помощью мощного излучения на поверхность алюминия, причем перед этим оксидный слой разрушается под действием мощного излучения и возбужденных частиц упрочняющего материала. При помощи отклоняющего луч устройства на обрабатываемой поверхности создается слоистая металлизированная структура с требуемой геометрией рисунка. Недостатком известного способа является невозможность получения структуры с размерами отдельных элементов в несколько нанометров. Кроме того, использование способа ограничено, поскольку он применим только для алюминиевых подложек.

Известен способ формирования рисунка с применением электронного пучка (см. описание к заявке Японии N 6038411, Н01L 21/302, 1994 /2/). Способ заключается в том, что в реакционной камере размещают систему для фокусировки электронного пучка, создают атмосферу из возбужденных реакционноспособных частиц и размещают на держателе обрабатываемую пластину. С помощью электронного пучка, несущего информацию, связанную с определенным рисунком, облучают пластину и в результате изменения ее вещества под воздействием электронного пучка и реакционноспособных частиц на пластине формируется определенный рисунок. Недостатком известного способа являются последовательный (низкопроизводительный) характер и сложность его осуществления, заключающаяся в формировании в камере атмосферы, состоящей из частиц с одинаковой реакционной способностью, чтобы обеспечить воспроизводимость процесса на всех участках рисунка, что требует сложной аппаратуры контроля. Кроме того, известный способ не позволяет обеспечить получение элементов изображения, составляющих рисунок, с размерами в несколько нанометров.

Известен способ формирования проводящей структуры, включающий нанесение на подложку слоя материала и преобразование материала в проводящий под действием излучения от источника заряженных частиц (см. И.А.Аброян, А.Н.Андронов и др. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984, с.308-310 /3/).

Недостатком известного способа является малая разрешающая способность создаваемого рисунка (проводящей структуры), не позволяющая получать отдельные элементы структуры размером в несколько нанометров.

Известен способ формирования проводящей структуры в диэлектрической матрице, включающий нанесение на подложку слоя исходного диэлектрического материала и его преобразование в проводящий под действием излучения от источника заряженных частиц. На подложку наносят слой материала толщиной 2-20 нм, а преобразование материала в проводящий проводят модулированным потоком заряженных частиц после нанесения материала на подложку (RU 2129320 [4]).

Недостатком известного способа является высокие требования к расходимости пучка заряженных частиц, необходимой для получения проводящих элементов очень малых размеров и невозможность их получения в «толстых» (~100 нм и более) пленках. Хорошо известно, что взаимодействие ускоренных частиц с веществом сопровождается их рассеянием. Эффекты рассеяния приводят к тому, что зона воздействия ускоренных частиц на облучаемый материал всегда превышает размеры пучка или размеры отверстий в маске, если облучение производится через маску. Это превышение тем больше, чем больше энергия ускоренных частиц, а при толщинах материала, меньших длины проективного пробега, ускоренных частиц в нем - пропорционально толщине материала. При средних и больших энергиях ускоренных частиц профиль рассеяния имеет грушевидную форму (см. фиг. в [4]). Аналогичную форму имеет и зона преобразования состава при использовании способа [4]. Поэтому если слой сделать тонким, то можно получить относительно более мелкие детали проводящей структуры. Если слой материала сделать толщиной более 20 нм, то, при прочих равных условиях, размеры получаемых элементов структуры начинают возрастать.

Наиболее близким к заявляемому по своей технической сущности и достигаемому результату является способ формирования проводящей структуры в диэлектрической матрице, который включает нанесение маски с отверстиями, образующими требуемый рисунок, на пленку или заготовку окисла металла или полупроводника, облучение маски (заготовки) потоком ускоренных протонов или атомов водорода и последующее воздействие на облученные участки кислородом, при этом отверстия в маске выполняют с аспектным соотношением, обеспечивающим получение элементов структуры меньшего размера, чем поперечный размер отверстий в маске (RU 2404479 [5]).

Недостатком известного способа является относительная сложность, поскольку для реализации требуется сложная в изготовлении маска и ограниченность спектра материалов в отношении которых способ применим.

Заявляемый в качестве изобретения способ формирования проводников в наноструктурах направлен на расширение спектра материалов, для которых возможно использование предлагаемого способа для уменьшения размеров формируемых наноразмерных проводников в диэлектрической матрице, а также на упрощение требований на аспектное соотношение отверстий в маске.

Указанный результат достигается тем, что способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников.

Использование маски с отверстиями, образующими требуемый рисунок, и облучение через маску потоком ускоренных частиц нанесенного на подложку слоя исходного диэлектрического вещества до полного удаления из него атомов неметалла в выбранных участках позволяет обеспечить восстановление исходного материала заготовки до практически чистого одноатомного вещества, обладающего проводящими свойствами (металл или полупроводник), и сформировать проводящий рисунок требуемой топологии. Режимы работы источников ускоренных частиц определяются расчетным путем или подбираются экспериментально.

Повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества позволяет восстановить исходное диэлектрическое вещество на поверхности ранее восстановленного металла и уменьшить его объем. Дозы, обеспечивающие уменьшение объема сформированных при первичном облучении металлических проводников, определяются расчетным путем или подбираются экспериментально. Таким образом, становится возможным изготавливать проводящие структуры не только в диэлектрических матрицах, представляющих собой окислы металлов или полупроводников, а практически из любых неорганических соединений.

Облучение маски с отверстиями и обрабатываемого слоя материала необходимо осуществлять до достижения минимального флюенса ускоренных частиц, который соответствует значениям, достаточным для полного восстановления соответствующего слоя диэлектрического материала до одноатомного металла или проводника.

Сущность заявляемого способа формирования проводников в наноструктурах поясняется примерами его реализации и фигурой, на которой показана последовательность проведения операции при формировании структуры.

Пример 1. В общем случае способ реализуется следующим образом. В вакуумной камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с нанесенным на ней диэлектрическим материалом 2, который преобразуется под воздействием потока 3 ускоренных протонов или атомов водорода в проводящий материал. Выше этого слоя размещается маска 4 с требуемым рисунком, изготавливаемая по любой из известных технологий. В вакуумной камере, объем которой откачивается до давления 1·10-7 торр, размещен источник ускоренных частиц - протонов. Заготовка облучается ускоренными частицами, например протонами или атомами водорода или гелия с энергией несколько кэВ до дозы, соответствующей минимальному значению, достаточному для полного удаления атомов неметалла из диэлектрического материала. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным путем. В результате взаимодействия материала с потоком ускоренных частиц под отверстиями в маске образуются элементы проводящей структуры 5, составляющие заданный рисунок, окруженные областями 6, где восстановление до состояния металла или полупроводника не произошло.

Затем заготовка подвергается воздействию пучков ускоренных ионов или атомов неметаллов 7, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников. В результате, как показывают измерения, выполненные с помощью методов атомно-силовой микроскопии, размеры сформированных элементов из металла могут достигать несколько нм.

Пример 2. В конкретных случаях способ реализуется следующим образом. В вакуумной камере технологической установки на подложкодержателе устанавливается подложка (заготовка) с нанесенным на ней диэлектрическим материалом, который преобразуется под воздействием потока ускоренных протонов или атомов водорода в проводящий. Поверх этого слоя размешается маска 4 с требуемым рисунком, изготавливаемая по любой из известных технологий.

Облучаемый материал представлял из себя пленку нитрида висмута толщиной 30 нм, напыленную на стандартную кремниевую пластину В вакуумной камере, объем которой откачивается до давления 1·10-7 торр, размещен источник ускоренных частиц - протонов. Заготовка облучается протонами с энергией 1,5 КэВ до дозы, соответствующей минимальному значению, достаточному для полного удаления атомов азота из пленки нитрида висмута толщиной 30 нм при облучении без маски. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным путем. В результате взаимодействия материала с потоком ускоренных частиц под отверстиями в маске образуются элементы проводящей структуры, составляющие заданный рисунок. Затем заготовка подвергается воздействию ускоренных ионов или атомов азота.

Как показали последующие измерения, выполненные с использованием различных методов (AFM-микроскопии, электронной микроскопии, электрофизических измерений), минимальный размер проводящих элементов составил ~15 нм.

Пример 3. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на кремниевую пластину наносился слой нитрида алюминия толщиной 20 нм.

Пример 4. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой оксида никеля толщиной 40 нм. При проведении экспериментов в качестве маски использовалась маска из электронного резиста с изготовленной в ней двумерной периодической структурой в виде рядов прямоугольных отверстий шириной 60 нм и длиной 800 нм.

Пример 5. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой нитрида титана толщиной 30 нм.

Пример 6. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой нитрида галия толщиной 20 нм.

Пример 7. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой нитрида ниобия толщиной 20 нм.

Пример 8. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из сапфира наносился слой нитрида кремния толщиной 20 нм.

Пример 9. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой гидрида лантана толщиной 20 нм, а первичное облучение проводилось ионами или атомами гелия.

Пример 10. Способ осуществлялся по той же схеме, что и в примерах 1 и 2, только с тем отличием, что на подложку из кремния наносился слой гидрида вольфрама толщиной 20 нм, а первичное облучение проводилось ионами или атомами гелия.

Таким образом, предлагаемый способ позволяет получать проводящие структуры с размерами элементов существенно меньшими, чем размеры отверстий в маске, с помощью которой осуществлялось их формирование в материалах различного химического состава.

Способ формирования проводников в наноструктурах, включающий нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы металла, полное удаление из него атомов неметалла в выбранных участках путем облучения диэлектрического вещества через маску пучком ускоренных частиц и повторное облучение этих же участков пучками ускоренных ионов или атомов неметаллов, входящих в состав исходного диэлектрического вещества с дозой, обеспечивающей уменьшение объема сформированных при первичном облучении металлических проводников.
СПОСОБ ФОРМИРОВАНИЯ ПРОВОДНИКОВ В НАНОСТРУКТУРАХ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 263.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a5e

Способ изготовления сверхпроводниковых однофотонных детекторов

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных...
Тип: Изобретение
Номер охранного документа: 0002476373
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
Показаны записи 1-10 из 160.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a5e

Способ изготовления сверхпроводниковых однофотонных детекторов

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных...
Тип: Изобретение
Номер охранного документа: 0002476373
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
+ добавить свой РИД