×
19.07.2019
219.017.b636

СПОСОБ КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ Н-ГЕКСАНА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002694829
Дата охранного документа
17.07.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен способ окисления н-гексана кислородом воздуха в оксопроизводные гексана и органические кислоты фракции С1-С4 в присутствии твердофазного катализатора. В качестве катализатора используют один из металлозамещенных алюмофосфатов МnАРО-5, СоАРО-5, МnАРО-18, СоАРО-18 или в качестве катализатора используют один из смешанных оксидов кобальта и марганца CoMnO или CoMnO, нанесенных на подложку силикагеля SiO или на подложку мезопористого молекулярного сита SBA-15, при этом окисление проводят в течение 24 часов при температуре 150°С, давлении 70 атм и потоке воздуха 60 мл/мин. Технический результат – разработка каталитического способа окисления н-гексана кислородом воздуха, которая обеспечивает высокую селективность по кислотам при мольном выходе продуктов окисления гексана 20%. 14 пр., 1 табл.
Реферат Свернуть Развернуть

Настоящее изобретение относится к каталитическому способу окисления н-гексана кислородом воздуха до кислородосодержащих производных н-гексана и органических кислот фракции С1-С4.

Н-гексан является компонентом широкой фракции легких углеводородов образующейся при нефтедобыче. В последнее время возрастает интерес к окислению дешевых алканов в оксопроизводные, которые в дальнейшем могут использоваться, в процессах нефтехимии и нефтепереработки.

Например, реализован в промышленности процесс окисления бутана в уксусную кислоту в присутствии ионов кобальта, который описан в патентах (US 4,032,570 28.06.1977, US 4,337,356 29.06.1982, US 6,057,475 02.05.2000, US 3,923,882 02.12.1975) Окисление н-бутана проводят воздухом в растворе уксусной кислоты при 160-190°С и 6 МПа без катализатора, либо в присутствии солей кобальта или марганца.

В патенте (US 4,332,743 01.06.1982) описывают жидкофазное окисление С48 парафинов кислородом в C13 кислоты. Для увеличения селективности по уксусной кислоте к катализатору (ацетат марганца или другая соль переходного металла) добавляют фосфорную кислоту или фосфаты металлов I и II групп в количестве 0,1-1000 ppm в расчете на элементарный фосфор. Реакцию проводят при 160-200°С и 3,0-7,0 МПа.

Однако использование гомогенных катализаторов приводит к трудностям отделения их из реакционной смеси.

Известен способ окисления С6-С28 алканов до соответствующих спиртов в присутствии микроорганизмов (US 4,473,643, 25.09.1984.)

Однако ферментативный катализ характеризуется невозобновляемостью используемых катализаторов и многоступенчатостью процесса синтеза.

Известны некаталитические способы окисления алканов кислородом воздуха с участием уксусной кислоты (US 3,993,676 23.11.1976). В качестве алканов предпочтительно использование С14-С20 фракции, продуктами окисления являются кислоты с меньшим количеством С-атомов.

Известен способ окисления алканов пероксидом водорода, катализируемого комплексами марганца, нанесенными на различные подложки, в температурном интервале -10-50°С (US 9,024,076 05.05.2015). В качестве продуктов образуются спирты, кетоны и алкилгидроперикиси.

Однако данный способ не предусматривает возможности использования воздуха в качестве окислителя.

Описан способ окисления гексана до гексановой кислоты с использованием в качестве катализаторов металлозамещенных алюмофосфатов (J.M. Thomas. On the nature of isolated active sites in open-structure catalysts for the aerial oxidation of alkanes // Topics in Catalysis., 2001, v. 15 (2-4), p. 85-91). Процесс проводят при 100°C и 30 атм О2, однако конверсия гексана не превышает 8%.

Задачей настоящего изобретения является разработка каталитического способа окисления н-гексана кислородом воздуха, обеспечивающего высокую селективность по кислотам при мольном выходе продуктов окисления гексана от 20%.

Поставленная задача решается описываемым способом окисления н-гексана. Способ заключается в том, что осуществляют каталитическое окисление н-гексана, в качестве катализатора в процессе используют твердофазные катализаторы из ряда: кристаллические металлозамещенные алюмофосфаты со структурой цеолитов AEI и AFI, смешанные оксиды d-элементов VII-IX групп IV периода, нанесенные на подложку силикагеля или мезопористого молекулярного сита SBA-15. Окисление проводят в при 120-150°С, давлении 35-75 атм, потоке воздуха 30-60 мл/мин.

Способ предусматривает, что используемые катализаторы могут содержать кремнеоксидное или алюмооксидное связующее.

Согласно способу, окисление осуществляют в реакторе автоклавного типа при перемешивании с постоянной подачей воздуха.

Техническим результатом осуществления способа в объеме независимого пункта формулы является высокая селективность по кислотам при высоком мольном выходе продуктов от 20%.

В качестве гетерогенных катализаторов в заявленном процессе были опробованы кристаллические металлозамещенные алюмофосфаты со структурой цеолитов AEI и AFI, смешанные оксиды d-элементов VII-IX групп IV периода, нанесенные на подложку силикагеля или мезопористого молекулярного сита SBA-15.

При всех вышеуказанных катализаторах достигался заявленный технический результат.

Преимуществом предложенного способа является также возможность регулирования состава продуктов синтеза за счет выбора того или иного катализатора из ряда заявленных.

Возможность осуществления способа с достижением заявленного технического результата подтверждена данными, приведенными в таблице 1. В таблицу включены наиболее перспективные из опробованных катализаторов.

Предлагаемый способ окисления гексана кислородом воздуха в общем виде осуществляют следующим образом.

Н-гексан и гетерогенный катализатор загружают в реактор автоклавного типа с постоянным перемешиванием и с постоянной подачей воздуха. После проведения окисления в реактор заливают растворитель для смешения двух фаз продуктов. Компонентный состав веществ определяют хроматографическим методом.

Нижеследующие примеры иллюстрируют осуществление изобретения и демонстрируют достижение технического результата.

Пример 1.

В качестве катализатора используют металлозамещенный алюмофосфат MnАРО-5. Навеску катализатора 2 мг и 20 г н-гексана помещают в автоклавный реактор с постоянным перемешиванием и постоянной подачей воздуха. В реактор подают воздух со скоростью 30 мл/мин до давления 35 атм и нагревают до 150°С. Реакцию проводят в течение 24-х часов. После завершения эксперимента реактор охлаждают до комнатной температуры, вскрывают, добавляют н-бутанол в качестве растворителя, чтобы смешать полярный и неполярный слой, и н-нонан в качестве внешнего стандарта. Хроматографический анализ реакционной смеси показал образование уксусной, пропановой, бутановой кислот, а также гексанона. Мольный выход продуктов реакции составляет 24%. Результаты представлены в таблице 1.

Пример 2.

Процесс ведут как в примере 1, отличие состоит в том, что температура эксперимента составляет 140°С. Показатели процесса представлены в таблице 1.

Пример 3 (сравнительный).

Процесс в условиях примера 1, отличие состоит в том, что температура эксперимента составляет 120°С. Показатели процесса представлены в таблице 1. Для данного примера характерно меньшая степень конверсии за счет большего индукционного периода реакции.

Пример 4.

Процесс ведут в условиях примера 1, отличие состоит в том, что навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 5.

Процесс ведут как в примере 4, отличие состоит в том, что давление в системе составляет 70 атм, а скорость потока воздуха составляет 60 мл/мин. Показатели процесса представлены в таблице 1.

Пример 6.

Процесс ведут как в примере 5, отличие состоит в том, что время эксперимента составляет 48 часов. Показатели процесса представлены в таблице 1.

Анализ результатов, полученных в примерах 1-6, показывает возможность достижения требований технического задания в широком диапазоне условий, при этом основными параметрами, оказывающими влияние на показатели процесса, являются температура, поток воздуха и время проведения эксперимента.

Пример 7.

Процесс ведут как в примере 3, отличие состоит в том, что в реакционную смесь добавляют инициатор - третбутилгидропероксид (ТБГП) (0.2 г). Показатели процесса представлены в таблице 1.

Анализ результатов полученных в примерах 3 (сравнительный) и 7 демонстрирует влияние инициирующей добавки на показатели процесса: введение инициирующей добавки приводит к увеличению мольного выхода продуктов на 7%.

Далее, в примерах, показана возможность осуществления процесса с некоторыми катализаторами из ряда заявленных при оптимальных условиях проведения процесса.

Пример 8.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют металлозамещенный алюмофосфат СоАРО-5, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 9.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют металлозамещенный алюмофосфат МпАРО-18, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 10.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют металлозамещенный алюмофосфат СоАРО-18, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 11.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца CoMn2O4/SiO2, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 12.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца Co2MnO4/SiO2, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 13.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца CoMn2O4/SBA-15, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Пример 14.

Процесс ведут как в примере 5, отличие состоит в том, что в качестве катализатора используют нанесенный на подложку смешанный оксид кобальта и марганца Co2MnO4/SBA-15, навеска катализатора составляет 10 мг. Показатели процесса представлены в таблице 1.

Таким образом, примеры 8-14 иллюстрируют возможность окисления н-гексана кислородом воздуха на заявленных катализаторах с высокой селективностью в кислоты при мольном выходе продуктов выше 20%.

Таким образом, все представленные примеры указывают на то, что осуществление способа в присутствии заявленных твердофазных катализаторов, позволяет достигнуть высоких селективностей образования кислот фракции С1-С4 при мольном выходе продуктов окисления н-гексана кислородом воздуха более 20%.

Способ окисления н-гексана кислородом воздуха в оксопроизводные гексана и органические кислоты фракции С1-С4 в присутствии твердофазного катализатора, отличающийся тем, что в качестве катализатора используют один из металлозамещенных алюмофосфатов МnАРО-5, СоАРО-5, МnАРО-18, СоАРО-18 или в качестве катализатора используют один из смешанных оксидов кобальта и марганца CoMnO или CoMnO, нанесенных на подложку силикагеля SiO или на подложку мезопористого молекулярного сита SBA-15, при этом окисление проводят в течение 24 часов при температуре 150°С, давлении 70 атм и потоке воздуха 60 мл/мин.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 27.
13.01.2017
№217.015.7c19

Соединительные элементы трансформируемой одежды

Изобретение относится к трансформируемой одежде и в частности к элементам, обеспечивающим трансформацию одежды. Задачей изобретения является создание возможности регулирования степени стягивания стыкуемых частей трансформируемой одежды по месту их соединения. Особенность данного изобретения...
Тип: Изобретение
Номер охранного документа: 0002600295
Дата охранного документа: 20.10.2016
29.12.2017
№217.015.faa2

Способ получения цеолита mfi

Изобретение относится к области синтеза цеолитов. Cпособ синтеза цеолита MFI включает приготовление прекурсора, характеризующегося составом, соответствующим области кристаллизации данного цеолита. Прекурсор готовят путем пропитки твердых частиц силикагеля реакционной смесью, обеспечивающей в...
Тип: Изобретение
Номер охранного документа: 0002640236
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fdc3

Катализатор дегидрирования сжиженных углеводородных газов, способ его получения и применения

Изобретение относится к разработке способов и катализаторов дегидрирования алифатических углеводородов с целью получения олефиновых углеводородов. Описан способ получения катализатора на основе цеолита для дегидрирования сжиженных углеводородных газов, характеризующийся тем, что нанесение...
Тип: Изобретение
Номер охранного документа: 0002638171
Дата охранного документа: 12.12.2017
20.01.2018
№218.016.10fb

Цеолитсодержащий катализатор олигомеризации и способ его приготовления

Заявленная группа изобретений относится к способам модифицирования цеолитов и может быть использована для получения цеолита с дезактивированными кислотными центрами, располагающимися на внешней поверхности цеолитных кристаллов, и их применения. Способ приготовления цеолитсодержащего...
Тип: Изобретение
Номер охранного документа: 0002633882
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.15fc

Способ получения бензиновых фракций из олефинсодержащих газов

Изобретение относится к способу получения бензиновых фракций путем контактирования олефинсодержащих газов в условиях олигомеризации с цеолитсодержащим катализатором с микро-мезопористой структурой (микропористым цеолитом ZSM-5 с мольным отношением Si/Al от 20 до 40), полученным одностадийной...
Тип: Изобретение
Номер охранного документа: 0002635110
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.3052

Способ получения бензиновых фракций углеводородов из олефинов

Изобретение относится к способу получения бензиновых фракций углеводородов путем контактирования олефинсодержащих фракций с цеолитсодержащим катализатором. При этом используют катализатор типа ZSM-5 с дезактивированной внешней поверхностью, полученный обработкой Н-формы цеолита ZSM-5...
Тип: Изобретение
Номер охранного документа: 0002644781
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.43b7

Способ получения 2-этилгексеналя

Настоящее изобретение относится к способу получения 2-этилгексеналя, который используют в качестве сырья для получения 2-этилгексанола - пластифицирующей добавки к композитам из поливинилхлорида. Способ включает конденсацию н-бутаналя на гетерогенном катализаторе при повышенной температуре и...
Тип: Изобретение
Номер охранного документа: 0002649577
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4e60

Способ получения микро-мезопористого цеолита y и цеолит, полученный этим способом

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами. Способ получения микро-мезопористого цеолита Y включает суспендирование и активацию деалюминированного цеолита Y...
Тип: Изобретение
Номер охранного документа: 0002650897
Дата охранного документа: 18.04.2018
29.06.2018
№218.016.68fd

Способ лечения дискинезий желчевыводящих путей по гиперкинетическому и гипокинетическому типам физиотерапевтическим методом и устройство для воздействия на желчный пузырь и желчевыводящие пути

Группа изобретений относится к медицине, а именно к гастроэнтерологии и физиотерапии. Портативное физиотерапевтическое устройство для лечения дискинезии желчевыводящих путей (ДЖВП) по гипокинетическому и гиперкинетическому типу содержит автономный источника питания, два многоразовых электрода,...
Тип: Изобретение
Номер охранного документа: 0002659146
Дата охранного документа: 28.06.2018
15.12.2018
№218.016.a7d9

Гранулированный без связующего кристаллический цеолит mfi и способ его получения

Изобретение относится к синтезу цеолитов. Предложен гранулированный без связующего кристаллический цеолит типа MFI и способ его синтеза. Способ включает пропитку твердых частиц силикагеля раствором реакционной смеси с получением прекурсора, характеризующегося составом, соответствующим области...
Тип: Изобретение
Номер охранного документа: 0002675018
Дата охранного документа: 14.12.2018
+ добавить свой РИД